A New Nested Neutral Point-Clamped (NNPC) Converter for Medium-Voltage (MV) Power Conversion

Mr. V. Balu & N. Suresh

Abstract—In this paper, a new voltage source converter for medium voltage applications is presented which can operate over a wide range of voltages (2.4–7.2 kV) without the need for connecting the power semiconductor in series. The operation of the proposed converter is studied and analyzed. In order to control the proposed converter, a space-vector modulation (SVM) strategy with redundant switching states has been proposed. SVM usually has redundant switching states in any case. The performance of the converter under different operating conditions is investigated in MATLAB/Simulink environment. The feasibility of the proposed converter is evaluated experimentally on a 5-kVA prototype.

Index Terms—DC–AC power conversion, multilevel converter, space vector modulation (SVM).

I. INTRODUCTION

MEDIUM-VOLTAGE high-power conversion applications such as motor drives, microgrids, and distributed generation systems use various converter topologies to achieve the desired voltage and performance [1]. Recent developments in semiconductor technology and commercial availability of high-power switches, such as the insulated gate bipolar transistor and the integrated gate commutated thyristor, have resulted in a potential acceptance of the two-level voltage source converter (VSC) for high-power applications as well. However, for some applications, e.g., medium voltage drives, HVDC converters, and flexible alternating current transmission system controllers, the voltage ratings of power semiconductor devices are still insufficient to meet the required voltage levels by one single-module of a two-level VSC. Multilevel VSC configurations are therefore preferred option to meet the desired high voltage and power levels. The main features of these configurations, as compared with the two-level VSC, are their capabilities to reduce: 1) harmonic distortion of the ac-side waveforms; 2) \(dv/dt\) switching stresses; 3) switching losses; and 4) minimize or even eliminate the interface transformer [1]–[5].

The multilevel VSC topologies can be categorized into two groups: classic multilevel topologies and advanced multilevel topologies. The classic multilevel topologies include the neutral-point clamped (NPC), flying capacitor (FC), and the cascaded H-bridge (CHB). [1]. The classic multilevel converters have been commercialized successfully by major manufacturers; however, they have some drawbacks which limit their applications. For instance, the NPC structure with higher number of levels is less attractive because of its limitations which include: 1) higher losses and uneven distribution of losses in the outer and inner devices, 2) dc-link capacitor voltage balance becomes unattainable in higher level topologies with a passive front end when using conventional modulation strategies, and 3) the number of clamping diodes increases substantially with the voltage level. The FC structure needs to have higher switching frequencies to keep the capacitors properly balanced, whether a self-balancing or a control-assisted balancing modulation method is used (e.g., greater than 1200 Hz). Also, the number of PCs increases with the voltage level. The CHB structure can reach higher voltage and higher power level with the modular structure; however, this topology needs: a large number of isolated dc sources, an expensive and bulky phase-shifting transformer, and a substantially higher number of active devices to achieve a regenerative option.

A number of variants and new multilevel converters have been proposed in the literature [6]–[16]. These are variations or hybrids of the three classic multilevel topologies and are called advanced multilevel topologies. Among recent proposals, the following topologies have found practical application, which are commercialized by manufacturers: the five-level H-bridge NPC (5 L-HNPC), the three-level active NPC (3 L-ANPC), the five-level active NPC (5 L-ANPC), and the four-level hybrid-clamped converter (4 L-HC). The main features of these converters are:

1) A 5L-HNPC is the H-bridge connection of two classic 3L-NPC phase legs which makes a five-level converter [6]–[9]. This topology can reach higher levels and higher output voltages; however, like an H-bridge topology, it requires isolated dc sources with the phase shifting
transformer which increases the cost and complexity of the converter.

2) A 3L-ANPC is an improved three-level NPC where the neutral clamping diodes are replaced with clamping switches to provide a controllable path for the neutral current, and hence, control the loss distribution among the switches of the converter [10], [11]. This topology distributes the losses between the inner and outer switching devices in each converter leg and thus improves the cooling system design and increases the maximum power ratio of the converter. However, although a higher number of the devices as compared to the three-level NPC, the same number of output voltage levels is achieved. This decreases the reliability and increases the cost and complexity of the overall converter.

3) A 5L-ANPC is a combination of a 3L-ANPC and 3L-FC, which increases the number of voltage levels [12]–[15]. This converter can reach higher output levels without the need to add series-connected diodes. Moreover, the problem of capacitor voltage balancing when using passive front ends is avoided. This converter, however, is complex as it needs to control the FC voltages and their initialization, aside from the NPC dc-link capacitors voltage unbalance control. Another drawback of the 5L-ANPC is that the switch voltage ratings are different in different converter branches (in fact two devices may have to be connected in series for the top and bottom switches). In other words, the voltage stresses of the switches for a 5L-ANPC are different, the outer switches are subjected to half of the dc-link voltage but the inner devices have just 1/4 of the dc-link voltage.

4) A 4L-HC converter is an improved ANPC converter that makes four levels at the output voltage [16]. This converter can reach four levels without the need for series-connected power switches and all the switches have the same voltage stress. In comparison to the classic multilevel topologies, although the 4L-HC converter has less number of passive components, it does need two more power switches in each phase which could have a negative impact on the cost and control complexity of the converter.

In this paper, a new multilevel topology, shown in Fig. 1, is presented for medium-voltage high-power application. The proposed converter has the following features:

1) It can operate over a wide voltage range of 2.4–7.2 kV without the need for connecting the power semiconductor in series.
2) It has four levels at the output voltage and unlike aforementioned converters, all switches have the same voltage stress (equal to one-third of the dc voltage).
3) Compared to the classic four-level topologies, as shown in Table I, it has fewer number of components and complexity. In comparison to the four-level NPC, the number of diodes has been reduced significantly and in comparison

Fig. 1. Proposed NNPC converter.

TABLE I

<table>
<thead>
<tr>
<th>Topology</th>
<th>Number of Switches</th>
<th>Number of Diodes</th>
<th>Number of Flying Capacitors</th>
<th>DC Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-L NPC</td>
<td>18</td>
<td>18</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4-L FC</td>
<td>18</td>
<td>-</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>NNPC Topology</td>
<td>18</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE II
SWITCHING STATES OF THE FOUR-LEVEL NNPC AND CONTRIBUTION OF THE AC-SIDE CURRENTS TO THE FC VOLTAGES

<table>
<thead>
<tr>
<th>Sx1</th>
<th>Sx2</th>
<th>Sx3</th>
<th>Sx4</th>
<th>Sx5</th>
<th>Sx6</th>
<th>V_{Cx1}</th>
<th>V_{Cx2}</th>
<th>V_{xx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No Impact</td>
<td>No Impact</td>
<td>V_{DC}/2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Charging (ix > 0)</td>
<td>No Impact</td>
<td>V_{DC}/6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Discharging (ix < 0)</td>
<td>Charging (ix > 0)</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Charging (ix > 0)</td>
<td>Discharging (ix < 0)</td>
<td>-V_{DC}/6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>No Impact</td>
<td>Discharging (ix < 0)</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No Impact</td>
<td>No Impact</td>
<td>-V_{DC}/2</td>
</tr>
</tbody>
</table>

Fig. 2. Space-vector diagram of a four-level converter.

to the four-level FC it has fewer capacitors. In comparison to a 4L-HC converter, it has less number of power switches. Also, unlike CHB converters, it does not need to have a transformer for isolated dc sources.

The proposed multilevel converter is studied and analyzed, and a space-vector modulation (SVM) strategy has been developed to control and balance the capacitor voltages. The performance of the converter under different operating conditions is investigated in MATLAB/Simulink environment. A 5-kVA laboratory prototype has been built and results are presented.

II. CONVERTER TOPOLOGY

A. Operation of the Proposed Converter

The proposed multilevel topology, as shown in Fig. 1, is a combination of an FC topology and a NPC topology named nested neutral point-clamped (NNPC) converter, which provides a four-level output voltage. To ensure equally spaced steps in the output voltages, the capacitor C_{x1} and $C_{x2}, x = a, b, c$ are charged to one-third of the total dc-link voltage. The proposed topology in comparison to the classic four-level topologies, as shown in Table I, has a fewer number of components and hence is less complex to control.

TABLE III
PARAMETERS OF THE SYSTEM (SIMULATION STUDIES)

<table>
<thead>
<tr>
<th>Converter Parameters</th>
<th>Values</th>
<th>Values (p.u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converter Rating</td>
<td>5 MVA</td>
<td>1.0</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>7.2 kV</td>
<td>1.0</td>
</tr>
<tr>
<td>Flying Capacitors</td>
<td>1000 µF</td>
<td>4.0</td>
</tr>
<tr>
<td>Input DC Voltage</td>
<td>11.8 kV</td>
<td>-</td>
</tr>
<tr>
<td>Output Frequency</td>
<td>60 Hz</td>
<td>1.0</td>
</tr>
<tr>
<td>Output Inductance</td>
<td>5.5 mH</td>
<td>0.2</td>
</tr>
<tr>
<td>Output Load</td>
<td>10.5 Ω</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fig. 4. Simulation waveforms: (a) inverter voltage and (b) voltages of FCs ($m = 0.95$, $PF = 0.9$)

Fig. 5. Simulation waveforms: (a) inverter voltage and (b) voltages of FCs ($m = 0.9$, $PF = 0.7$).

Fig. 6. Simulation waveforms: (a) inverter output voltage and (b) voltages of FCs (step change from half-load to full load).

Fig. 7. Simulation waveforms; voltage of FCs with and without an SVM controller

Four output levels are achieved from six distinct switching combinations. The list of switching combinations is shown in Table II. It should be noted that all switch devices are rated to one-third of the dc-link voltage. Another advantage of the proposed converter is the redundancy in switch combination to produce output levels. For example, there are two redundant switching states (as can be seen in Table II) to generate voltage levels of $1/6V_{dc}$ and $-1/6V_{dc}$. Each redundant state provides a specific charging and discharging current path for each floating capacitor. This is a specific feature of redundant switching states that can be used to achieve voltage balancing of the capacitors.

The main technical challenge is to identify the best redundant switching state to achieve this.

B. SVM for the Proposed NNPC Converter

SVM technique has been applied to the proposed converter to control the output voltage and to keep the capacitor voltages balanced and constant. As described in Table II, there are six distinct switching states for each phase of the proposed four-level converter of Fig. 1. The space-vector diagram of a four-level on the ab plane is a hexagon centered at the origin of the plane, as shown in Fig. 2. The reference vector is synthesized...
Fig. 8. Experimental setup for the proposed NNPC converter.

Fig. 9. Experimental results, steady state: (a) inverter output line voltage and (b) voltages of FCs, $m = 0.95$, $PF = 0.9$.

Fig. 10. Experimental results, steady state: (a) inverter output line voltage and (b) voltages of FCs, $m = 0.9$, $PF = 0.7$.

Fig. 11. Experimental results, transient state: (a) inverter output line voltage and (b) voltages of FCs, step change from half-load to full load.
by the three adjacent switching vectors [5], [17] and the can be described as

\[\dot{V}_{t_1} + \dot{V}_{t_2} + \dot{V}_{t_3} = \dot{V}_{ref} T_s \]

\[\dot{V}_{ref} = \frac{t_1 + t_2 + t_3}{T_s} \]

\[V : e, \theta = \theta_{ref} \]

where \(T_s \) is the switching period, \(\dot{V}, \dot{V}, \) and \(\dot{V} \) are the three switching vectors adjacent to \(V_{ref} \) and \(t_1, t_2, \) and \(t_3 \) are the calculated on-duration time intervals of the switching vectors, respectively [18].

The procedure of the SVM strategy can be summarized in Fig. 3 [18].

In order to achieve voltage balancing for the capacitor, the best switching states should be selected among the available redundant switching state to minimize the voltage deviation of the capacitors. Therefore, a cost function, \(J \), can be defined based on the energy stored in the capacitors as follows:

\[J = J_a + J_b + J_c \]

\[= \frac{1}{2} \sum_{i=1}^{3} C_{ci} \left(V_{ci}^2 - \frac{V_{dc}^2}{3} \right) \]

\[x = a, b, c \]

(2)

To minimize the cost function \(J \), the following condition should be satisfied:

\[\frac{dV_{ci}}{dt} = \sum_{i=1}^{3} C_{ci} \left(V_{ci} \right) \]

\[- \frac{V_{dc}}{3} \]

\[x = a, b, c \]

(3)

where

\[i_{Cxi} = C_{Cxi} \]

\[\frac{dt}{x = a, b, c} \]

(4)

and \(i_{Cxi} \) is the current of the capacitor \(C_{ci}, x = a, b, c, i = 1,2 \).

Equation (3) can be rewritten as

\[\frac{1}{i} \sum_{i=1}^{3} C_{ci} \left(V_{ci} \right) \]

\[\frac{V_{dc}}{3} \]

\[i_{Cxi} \leq 0, x = a, b, c. \]

(5)

The best switching states should be found to minimize (5). If an averaging operator is applied to (5) over a one sampling period

\[\frac{1}{T_s} \sum_{i=1}^{k} \left[\sum_{i=1}^{3} C_{ci} \left(V_{ci} \right) \right] \]

\[\frac{V_{dc}}{3} \]

\[i_{Cxi} \leq 0, x = a, b, c. \]

(6)

\[T_s = k T_s \]

III. SIMULATION RESULTS

In order to show the performance of the proposed NNPC four-level converter, simulation studies have been done in MATLAB/Simulink environment for a 5-MVA/7.2-kV inverter. The parameters of the system are shown in Table III. The simulation also demonstrates the effectiveness of the developed SVM to generate output voltages, and to regulate and balance the voltage of FCs.

The performance of the proposed NNPC converter and SVM controller has been studied during both the steady-state and transient-state.

A. Steady-State Analysis

Figs. 4 and 5 show the performance of the proposed converter using SVM technique with different load power factors. Fig. 4 shows the inverter output voltage, output currents, and FC voltages, where modulation index \(m = 0.95 \) and load PF is 0.9. Fig. 5 also shows the inverter output voltage, output currents, and FC voltages, where modulation index \(m = 0.9 \) and load...
If the capacitor voltages is assumed to be constant over one
$$T_s$$, then
$$\sum_{i=1}^{2} v_{cix} - \frac{V_{dc}}{3} (k+1)T_s \leq 0, \quad x = a, b, c$$

and consequently
$$\sum_{i=1}^{2} v_{cxi} - \frac{V_{dc}}{3} i_{cxi} \leq 0, \quad x = a, b, c$$

As can be seen from the Figs. 4 and 5, unlike four-level diode-clamped converter that has limitation over voltage balancing with high-load power factor, the proposed converter can regulate and balance capacitor voltages under various different conditions.

It should be noted that the voltage stress for all the power switches are the same and equal to one-third of the dc input voltage which in this case is 3933 V. This means that for a 7.2-kV inverter, a power switch with the rate of 6500 V can be used which is available in the market. This is the main outstanding

I. EXPERIMENTAL RESULTS

The feasibility of the proposed converter is evaluated experimentally. Fig. 8 shows the experimental setup for the proposed NNPC converter. The parameters of Table IV were used for experiments as a scaled-down prototype.

Figs. 9 and 10 show the performance of the proposed converter under different operating conditions. Fig. 8 shows the inverter output voltage, output currents, and FC voltages, where modulation index \(m = 0.95 \) and load PF = 0.9. Fig. 10 also shows the inverter output voltage, output currents, and FC voltages, where modulation index \(m = 0.9 \) and load PF = 0.75.

Fig. 11 shows the performance of the proposed converter under transient condition when load changes from half-load to full load. Fig. 12 shows the effectiveness of the SVM controller to control voltages of the FCs. As can be seen from Figs. 9 to 12, in all the cases capacitor voltages are well balanced.

II. CONCLUSION

This paper introduces a new four-level VSC for medium-voltage applications called NNPC. The proposed topology can operate over a wide range of 2.4–7.2 kV without any power semiconductor in series. The proposed converter has fewer components as compared with classic multilevel converters. Moreover, the voltage across the power semiconductors is only one-third of the dc link (and equal for all semiconductors). An SVM strategy which benefits from the switching state redundancy has been used to control the output voltage and stabilize voltages of the FCs. The feasibility of the proposed converter is evaluated experimentally and results are presented.
REFERENCES

Mr. V. BALU was born in India in the year of 1985.He received B. Tech degree in Electrical and Electronics Engineering in the year of 2006 & M.Tech PG in Electrical power systems in the year of 2013 from JNTUH, Hyderabad. He is expert in ControlSystems, Electrical circuits, Power system Subjects. He is currently working as An Associate Professor in EEE Department in Laqshya Institute of Technology and Sciences, Khammam, Telangana State, India.

N. Suresh m.tech(power electronics) pursuing in dhruru institute of engineering & technology, tooranpet,choutuppal,nalgonda, telangana-508252

Available online: http://edupediapublications.org/journals/index.php/IJR/