Analysis of Earthquake Resistance RCC Building By Using Base Isolation and Dampers System

Ashwini Kukde¹, Manish Chudare²

¹M- Tech Research Scholar (Structure), Tulisiramji Gaikwad Patil College of Engineering and Technology, Nagpur
ashwinikukade5@gmail.com

²Assistant Professor Tulisiramji Gaikwad Patil College of Engineering and Technology, Nagpur
manishchudare@gmail.com

Abstract:

Base isolation is nowadays widely considered as an effective strategy to protect structures subject to seismic excitations. However, it has been shown that, in the case of seismic excitations with high energy content at low frequencies, i.e. a near-fault event or a seismic wave propagating itself through alluvial soil, isolation bearings may undergo gross deformations. Observing that the response of base-isolated (BI) systems is dominated by the first-modal contribution and that Tuned Mass Damping (TMD) is able to reduce the fundamental vibration mode,

A benchmark structure in which the non-linear response of isolation devices (elastomeric and friction pendulum) is explicitly considered has been recently defined. By using this model, this paper aims to investigate the non-linear behaviour of the benchmark isolated structure when a mass damping system is applied on the isolation layer, in order to study the effectiveness of this strategy in reducing the seismic response of the isolation layer.

Keywords

Base Isolation, Tuned Mass Damping, Hybrid control strategy

1. Introduction

The control of seismic structural response has been widely investigated in the last decade, research efforts have led to notable progress both in theoretical an technological knowledge with the introduction of new materials and devices having high effectiveness and reliability. Among the several proposed control strategies, the Base Isolated systems (BI) has to be considered nowadays an effective strategy to protect civil structures against seismic excitations. Numerous real applications confirm this statement. Its effectiveness depends on the low-pass filtering capacity of the range of frequencies where the earthquake energy is strongest and closest to the superstructure’s fundamental natural vibration period. The filtering capacity mainly influences the superstructure’s inter-storey drifts by concentrating large deformations onto the isolation bearings. Therefore, the central problem of the base isolation strategy is that, under certain excitations, having high energy content at a low frequency [Spencer et al., 2000], the system may suffer from excessive displacements at the base. The control of such displacements is generally achieved by using high-damping isolation devices. Nevertheless this strategy worsens the whole system performance with a significant increase in absolute accelerations and displacements at the superstructure.

By observing that well isolated system responses are dominated by the first-modal contribution and that Tuned Mass Dampers are able to reduce the fundamental vibration mode, The objective of the proposed combined system is to control the system response by only reducing the fundamental modal contribution which is dominant in such systems.

2. The Base Isolated Benchmark Structure

The benchmark structure [Narasimhan et al., 2006] is a base-isolated eight-storey, steel braced frame building, 82.4 meters high and 54.3 meters wide, and it is representative of
existing buildings in Los Angeles, California. The floor plan is L-shaped (figure 1). The superstructure is modelled as a three dimensional linear elastic system, and both the superstructure and the base are modelled by using three master degrees of freedom (DOF) per floor. The combined model of the superstructure (24 DOF) and isolation system (3 DOF) consists of 27 degrees of freedom. All twenty four modes in the fixed base case are used in modelling the superstructure for which a 5% damping ratio is assumed.

The base isolation system for the aforementioned superstructure is not strictly assigned as it can be modified depending on the dynamic response analysis to be carried out. Generally, it is possible to arrange three device types into 92 default configurations: linear elastometric isolation system with low damping, non-linear friction isolation (pendulum devices), and the bilinear elastometric isolation system (lead-rubber devices). In this study, numerical analyses have been carried out by considering an isolation system constituted by both elastomeric and frictional devices (Figure 1).

3. Effectiveness of Bi&Tmd System - Seismic Linear Response

Wide-ranging numerical experimentation on the dynamic linear response of base-isolated benchmark structures equipped with Tuned Mass Dampers has been carried out in order to verify the effectiveness of the proposed control strategy. The benchmark’s authors [Narasimhan et al., 2006] suggest both a set of seven bi-directional recorded seismic inputs (Newhall, Sylmar, El Centro, Rinaldi, Kobe, Jiji, Erzinkan) to study the spatial dynamic behaviour of the structure, and a set of performance indexes to describe the effect of the control system on the isolated benchmark. In this study seven indexes have been considered (Table 3.1).

Table 3.1: Optimal mass dampers stiffness and damping

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J₁</td>
<td>Peak base shear (isolation-level) in the controlled structure normalized by the corresponding shear in the uncontrolled structure</td>
</tr>
<tr>
<td>J₂</td>
<td>Peak structure shear (at first-storey level) in the controlled structure normalized by the corresponding shear in the uncontrolled structure</td>
</tr>
<tr>
<td>J₃</td>
<td>Peak base displacement or isolator deformation in the controlled structure normalized by the corresponding displacement in the uncontrolled structure</td>
</tr>
</tbody>
</table>

Figure 2: TMD effectiveness in reducing base isolators relative displacement

Finally, TMD on BI appears to be very effective in reducing the RMS seismic response of the isolators. However BI&TMD control strategy reduces its effectiveness if peak displacement control of isolation devices is pursued, because of the inertia of TMDs, which does not allow devices to be effective in the application of the control actions at once.

4. Effectiveness Of Bi&Tmd System – Seismic Non-Linear Response

The numerical model of the benchmark problem has been developed by its authors by using the Simulink tool in Matlab software [Narasimhan et al., 2006], this model has been modified to take into account the passive actions applied by the Tuned Mass damping systems. In particular two TMD system configurations are herein investigated (Figure 2 - Configuration A and Configuration B) consisting of two satellite masses located at the edge of the isolation level to control both translational and rotational components of motion.

Figure 1: Benchmark structure - Isolation level plan

Figure 2: TMD effectiveness in reducing base isolators relative displacement
In order to investigate the effectiveness of a Tuned Mass Damping system to improve the seismic performance of a non-linear Base Isolated System, a mixed solution for the isolation layer has been considered in which 31 elastomeric devices and 61 frictional devices are adopted. The devices’ hysteretic behaviour has been modelled by using the well-known Bouc-Wen model [Wen, 1976], and their force displacement responses are represented in figure 2. A parametric analysis has been carried out by varying the mechanical characteristics of the satellite masses to evaluate the non-linear seismic response of the benchmark structure to the seismic events under consideration. In particular, the performance indexes, for the non-linear benchmark structure equipped with a TMD system, are evaluated on varying the mechanical parameters

\[(\omega_x, \omega_y, \xi) \]

of the satellite masses within the following ranges:

\[0.5\Omega_{\text{ref}} \leq \omega_x \leq 1.5\Omega_{\text{ref}}, \quad 0.5\Omega_{\text{ref}} \leq \omega_y \leq 1.5\Omega_{\text{ref}}, \quad 0.5\xi_{\text{ref}} \leq \xi \leq 1.5\xi_{\text{ref}} \]

Both Configuration A and configuration B for the satellite masses are taken into account in the parametrical analysis. The results of such an analysis for the Erzinkan earthquake, with reference to the \(J_1 \) and \(J_2 \) performance indexes, which are those related to the isolation layer relative displacement seismic response, are plotted in figure 3. In particular, a contour line plot has been adopted to show the effect on varying the tuning frequencies in both \(x \) and \(y \) directions on the TMD system’s seismic performance. Moreover, the optimal progress of these two variables has been represented, pinpointing the optimal tuning of the mass damping devices as the intersection of such progress.

This figure clearly show the effect of non-linear behaviour of the isolation system: despite the system works as a SDOF system, different frequency peaks are generally observed in the isolators’ drift time-history transform. These peaks depend on the input signal dynamic features and its effect on the system in terms of non-linear behaviour. In the analyzed case, where friction devices are considered, the overall stiffness of the isolation system mainly depends on the seismic displacement demand; such demand significantly varies during the event forcing the systems’ dynamic response to present wide-ranging energy frequency content.

This effect can be observed for each of the considered seismic input, however some seismic response (El Centro, Newhall) presents a Fourier spectrum with energy distributed on a wide frequency range, whereas in other cases (Sylmar, Erzinkan) a single frequency response peak is still recognizable. It’s well known that a TMD system is able to reduce a single vibration frequency contribution to seismic response, it optimally works when dynamic response presents energy content concentrated on a well-defined single frequency.

So, the frequency distribution of the energy content should be considered a suitable index to estimate the effectiveness of a TMD system.

With this in mind, in figure 5, a comparison between the transfer function of equivalent SDOF systems, which parameters are estimated to optimally fit the normalized Fourier transform progress for two different seismic events, and the same Fourier transform is carried out. It’s straightforward from this figure that an equivalent SDOF system represents a better model to describe the dynamic non-linear behaviour in the case of Erzinkan earthquake than for Newhall event, therefore a well-designed TMD is able to be more effective for Erzinkan and Sylmar (figure 4) recorded seismic inputs, which impose an output Fourier spectra having a well-defined single response peak.

Figure 3: Non-linear isolation devices. Force-displacement response

Figure 4: Base isolation drift - Non-linear seismic response Fourier transform
5. Conclusion

In this paper, the seismic response of a base-isolated benchmark structure in which the non-linear response of isolation devices is explicitly considered has been considered. By using this model, this paper investigates the non-linear behaviour of this structure when a mass damping system is applied on the isolation layer, in order to study the effectiveness of this strategy in reducing the seismic response of the isolation layer. Results show that the seismic performance in reducing the seismic displacement demand is lower than in the case of linear behaviour a 10% maximum reduction for the peak isolator displacement and a 15% maximum reduction for the RMS base displacement has been observed. Moreover, the efficiency of B&I/TMD system noticeably varies depending on the dynamic characteristics of the input seismic event, in particular it’s showed as well-designed TMD works properly in reducing peak and RMS displacement of bas isolators when non-linear seismic response presents energy content laying on a narrow frequency band.

These results have to be considered as a first step in a more comprehensive framework in which detailed analysis are going to carried out to explore the possibility to adopt Mass Damping to improve the seismic non-linear response of structures.

6. References.

