Serial Communication Protocol

Manshi Bisht, Lakshmi rajput, Nikhil kumar
Dept. of Electronics & Communication Engineering, Dronacharya College of Engg., Farrukhnagar, Gurgaon, India

Abstract
The Hard Core Processor (Power PC) can be replaced by Soft Core Processor (Micro Blaze) to develop SoC based applications on FPGA and this also reduces the cost of IP Cores. But the existing problem with Micro Blaze Soft Core Processor is that it does not have capability to read data from high speed sensors. Due to this the usage of Micro Blaze is limited to low frequency I/O applications. By introducing a high speed serial communication protocol this problem can be eliminated without increasing the hardware resources. This high speed serial communication protocol based on FPGA or SoC applications is proposed in this paper. The design is adopted Spartan 3E FPGA chip and simulation results indicate that it satisfies protocol requirements.

Keywords—
Micro Blaze; FPGA; Serial Communication; Serial to Parallel Conversion; Parallel to Serial Conversion

I. INTRODUCTION
As in SoC applications if IP core is soft core processor such as Micro blaze, it does not have capability to interface with high speed I/O devices due to which the usage is limited to low frequency applications even though the clock of Micro blaze is of high frequency. Sometimes the Micro blaze has to cross link with the devices which are on-chip for data acquisition and data processing. By introducing a standard serial communication protocol the data rate can be greatly increased and Micro blaze can access data from high speed I/O devices.

Serial communication is used for all long-haul communication and most computer networks, where the cost of cable and synchronization difficulties make parallel communication impractical. Serial computer buses are becoming more common even at shorter distances, as improved signal integrity and transmission speeds in newer serial technologies have begun to outweigh the parallel bus's advantage of simplicity (no need for serializer and deserializer, or SerDes) and to outstrip its disadvantages (clock skew, interconnect density). The migration from PCI to PCI Express is an example.

Micro blaze is a soft core processor, the part of the FPGA will acts as a Micro blaze processor by implementing the hardware description language. In Hard core processor such as Power PC, the memory cannot be varied depending on requirement, which is possible in the case of Micro blaze soft core processor. Another advantage is no need of any external usage of hardware resources to develop IP core which reduces the cost of IP core.

The implementation of standard module using FPGA increases the stability, reliability of the system greatly and reduces the development cycle. The implementation of high speed serial communication protocol is discussed in this paper without increasing any hardware resources. A part of FPGA acts as Micro blaze and the remaining part of FPGA is used to develop protocol.
II. FPGA & HDL
FPGA is a general purpose user programmable device. FPGA demonstrates good performance and logic capacity by exploiting parallelism. At present single FPGA platform can play multi-functions, including control, filter and system. FPGA design flow is a three-step process consisting of design entry, implementation, and verification stages. The full design flow is an iterative process of entering, implementing, and verifying the design until it is correct and complete. The key advantage of HDL when used for systems design is that it allows the behavior of the required system to be described (modeled) and verified (simulated) before Synthesis tools translate the design into real hardware (gates and wires). HDL describes hardware behavior. There are main differences between traditional programming languages and HDL. Traditional languages are a sequential process whereas HDL is a parallel process. HDL runs forever whereas traditional programming language will only run if directed.
FPGA consists of Programmable logic unit, the wiring resources and I/O unit which are programmable. FPGA is suitable mainly for complex designs. The design of FPGA is flexible. The logic blocks, routing resources and I/O unit can be programmed by the user to realize any logic function and to meet various requirements.

III. DESIGN STRUCTURE
A) Serial Communication Protocol
The CLK signal is main clock signal coming from the Micro Blaze soft core processor with 50 MHz frequency or with 20ns period. This CLK is treated as serial clock signal. This CLK is divided by 128 to produce CLK_DIV signal which is treated as parallel clock. The parallel clock period is 2560ns. DI and TX are the data signals, parallel and serial data respectively. STB is the strobe signal which goes low when parallel data is converted into serial data. After completion of parallel to serial conversion, STB signal goes high. The STB signal goes low for a period of 640ns. This STB signal indicates data sending is finished.
This interface control logic is located on data processing module. FPGA communicates with Micro Blaze processor by internal bus. FPGA adopts the Xilinx Company’s Spartan3e series, the input signal includes 50MHz clock, data/address multiplexing bus and write enabling signals. The output signal is CLK, STB, DI which are the signal the protocol requires.
The Micro Blaze processor sends 8 bits of data in the form of cmds through RS232 cable. In this paper, 4 cmds are combined to give 32 bit of data. This data is processed and will be converted into serial data based on this communication protocol.

B) Block Diagram
The Micro Blaze sends data in parallel form and that data will be written in data buffer
Serial Communication Protocol Manshi Bisht, Lakshmi rajput, Nikhil kumar

The data buffer unit is the functional unit that is mainly responsible for the storage control of parallel data; at the same time it receives upper software order; if there are sending requirements, it sends the parallel function.
data in buffer to parallel to serial conversion unit to process.

This module’s input signal includes write enabling (WR_EN), read enabling (RD_EN), write clock (WR_CLK), read clock (RD_CLK), write address (WR_ADDR), read address (RD_ADDR) and write data (WR_DATA). Output port uses synchronized output RD_DATA. After the power is reset, if WR_EN is effective, then data is wrote to WR_ADDR corresponding data unit under the action of the WR_CLK clock edge; if WR_EN is ineffective, then write port is closed. When RD_EN is effective, the data in RD_ADDR address space is read under the action of the RD_CLK clock edge as the initial data in the parallel to serial conversion unit.

2. Clock Generating Unit:
The clock generating unit is the functional unit that is mainly responsible for generating various required clock signal according to protocol requirements; input is the interval bus clock signal which Micro Blaze output; frequency is 50MHz; at the same time it provides sampling basic clock for parallel to serial conversion unit and generates sending finish signal STB (serial_en signal).

The Clock Generating Unit is responsible for generating required clock pulses which will satisfy the protocol. The Frequency Divider can be developed by using a 7 – bit counter. This counter produces CLK_DIV whose cycle period is equal to the 128 cycle’s period of CLK. As CLK signal frequency is 50 MHz and period is 20ns. This is the main clock signal coming from Micro Blaze. This acts as clock signal to the 7 – bit counter. The counter counts this clock signal and produces its output. Based on the proper HDL code the clock signal will be divided into CLK_DIV signal whose frequency is approximately 3.9 KHz and period is 2560ns. This CLK_DIV along with CLK signal acts as clock signal to Parallel to Serial Conversion Unit. The realization of code is as follows:

```vhdl
process(rst,clk)
variable temp:std_logic_vector(6 downto 0);
begin
if rst='1' then
    temp:="0000000";
elsif clk'event and clk='1' then
    temp:=temp+1;
end if;
clk_div1<=temp(temp'high);
end process;
clk_div<=clk_div1;
```

Serial Communication Protocol Manshi Bisht, Lakshmi rajput, Nikhil kumar
3. **Parallel to Serial Conversion Unit:**
The parallel to serial conversion unit is the functional unit that is mainly responsible for the conversion of parallel data to serial data; the data is output on the CLK clock edge according to protocol requirements. After the module are electrified, firstly the data which will be sent is wrote in data buffer unit; then the module receives upper software order to send data; the data buffer unit sends the data to parallel to serial conversion unit to data transform and produces serial DI data; After waiting serial data ready, clock generating unit produces CLK signal according to protocol requirements and produces STB signal after data sending has been finished for some time , this data sending has been finished.

4. **Serial to Parallel Conversion Unit:**
This unit is used to convert the serial input into the form of parallel. This final parallel data will be again sent to the Micro blaze to see the output in terminal in pc through RS232 cable. Serial to Parallel Conversion can be carried out based on CLK signal. A SIPO Shift Register can be used to develop Serial to Parallel Converter. SIPO register receives data in serial form and outputs data to Micro Blaze in parallel form. This parallel data is given to Micro Blaze to view output using Terminal Software. The realization of code is as follows:

```vhdl
process(clk,serial_en)
begin
  if clk'event and clk='0' and serial_en='0' then
    parallel_data<= serial_data & parallel_data_sig(31 downto 1);
  end if;
end process;
```

VI. **EMULATION RESULTS**
The emulation result shows that the serial clock’s frequency is higher than the parallel clock’s frequency. During the parallel to serial conversion, the strobe signal goes low. After the conversion, the strobe signal goes high. It will retain in high state until another data is given for conversion. The given input is 92345673 and its binary equivalent is “10010010001101000101011001110011”. The MSB indicates the start of the data and it should be kept at high to convert data into serial form.

![Emulation Results](image-url)
VII. CONCLUSION
As the Micro blaze processor is limited to low frequency applications, introduction of private serial communication protocol increases data transmission rate without increasing the hardware resources. In this paper the serial communication protocol for FPGA based SoC applications is shown, which reduces the development cycle, reduces the man power investment and increases reliability. The same FPGA can be used for developing Micro blaze and the protocol, this design reduces the cost and this design is worth promoting in future scope.

REFERENCES