Analysis Of Contact Stresses For Crane Hook Assembly Under Plasticity Condition For Different Materials Using Finite Element Method

Hussein Mohammed Hasan1, B.P.Chandra Sekhar2

1M.Tech student, Department of Mechanical Engineering, ANUCET Nagarjuna Nagar,GUNTUR,INDIA
Email id: hu6343@yahoo.com

2Assistant Professor, Department of Mechanical Engineering, ANUCET Nagarjuna Nagar, GUNTUR,INDIA
Email id: chandra.boyapati@gamil.com

Abstract:

In the industrial processes Crane Hook is used as lifting member. Crane Hooks are highly liable components and are always subjected to failure due to accumulation of large amount of stresses which can eventually lead to its failure. Real time pattern of stress concentration in 3D models of crane hook is obtained of different cross section (circular, trapezoidal). In the present study we assessed the contact frictional stresses for maximum load and under the plasticity of conditions of two different materials for different cross sections. The 3Dmodels were developed in solid works and the predicting of contact stresses were done in ANSYS Workbench module of 16.0 versions. By using above availabilities analyzed the contact stresses for circular and trapezoidal cross section for different materials in it trapezoidal cross-section and the structural steel is the best material comparatively to cast iron.

Keywords

Crane hook assembly with bolt, plasticity nature, circular cross section, Trapezoidal cross section, solid works, Finite Element method

1. Introduction

Crane hooks are the components which are generally used to lift the heavy load in industries and constructional work. Recently, generally crane hook are used in constructional work such a machine is useful since they can Do the conventional digging tasks as well as the suspension works. Another reason is that there are work sites where the crane trucks for suspension work are not available because of the narrowness of the site. In general an excavator has superior manoeuvrability than a crane truck. Hooks are also available in following different cross section area. The stress concentration factors are widely used in strength and durability evaluation of structures and machine elements. A large number of research works have been performed in this field and recommendations for the engineers developed [1, 2]. However, the diversity of the loading cases, geometry and material characteristics together with the new solution methods motivates to continue the research, as it is proved by a large number of notch problem related publications that appeared during the last decade. The review of these and earlier publications allow to conclude that the specific group of the structural members, the curved beams, need a more extensive investigation since a very few articles in this field have been published yet (perhaps, there is the one and the only publication directly related to the stress concentration factors in curved beams due to the additional discontinuity of the geometry, the circular holes, under bending load [3]). The present article continues the research work [4] on the modeling of the wear damage and its influence to the stress concentration for the lifting hooks of trapezoidal cross-section

2. Literature survey

M. Shabanet. al (2013), studied the stress pattern of crane hook in its loaded condition, a solid model of crane hookis prepared with the help of ABAQUS software. Real time pattern of stress concentration in 3D model of crane hook is obtained. The stress distribution pattern is verified for its correctness on an acrylic model of crane hook using shadow optical method (Caustic method) set up. By predicting the stress concentration area, the shape of the crane is modified to increase its working life and reduce the failure rates.

E.Naryvdaset. al (2012), investigated circumferential stress concentration factors with shallow notches of the lifting hooks of trapezoidal cross-section employing finite element analysis (FEA). The stress concentration factors were widely used in strength and durability evaluation of structures and machine elements. The FEA results were used and fitted with selected generic equation. This yields formulas for
the fast engineering evaluation of stress concentration factors without the usage of finite element models

3. Modeling

![Figure 1: Dimensions of crane](image1)

![Figure 2: Circular cross section](image2)

![Figure 3: Trapezoidal cross section](image3)

4. Material Properties under plasticity condition

Property of material to be deformed repeatedly without rupture by the action of a force, and remain deformed after the force is removed. The plasticity of a material is directly proportional to the ductility and malleability of the material. Ideal plasticity is a property of materials to undergo irreversible deformation without any increase in stresses or loads. Plasticity in metals is typically a result of dislocations. In brittle materials like rock or concrete, plasticity is caused predominantly by slippage at micro cracks. Plastic materials with hardening require increasingly elevated stresses to result in further plastic deformation.

![Figure 5: Describes the plasticity nature](image5)
Table 1 Model (A4) > Geometry

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>J:\crane\MODAL1.STEP</td>
</tr>
</tbody>
</table>

Definition
- **Source**: J:\\crane\MODAL1.STEP
- **Type**: Step
- **Length Unit**: Meters
- **Element Control**: Program Controlled

Bounding Box
- **Length X**: 227. mm
- **Length Y**: 434.99 mm
- **Length Z**: 168.3 mm

Properties
- **Volume**: 2.0317e+006 mm³
- **Mass**: 15.949 kg

Figure 6: Plasticity nature of structural steel

Figure 7: Plasticity nature of Cast iron

5. Finite Element Method Procedure
Figure 10: Meshed Model of circular cross section with element type of solid 187

TABLE 2 Model (A4) > Mesh

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Solved</td>
</tr>
<tr>
<td>Display</td>
<td></td>
</tr>
<tr>
<td>Display Style</td>
<td>Body Color</td>
</tr>
<tr>
<td>Defaults</td>
<td></td>
</tr>
<tr>
<td>Physics Preference</td>
<td>Mechanical</td>
</tr>
<tr>
<td>Relevance</td>
<td>0</td>
</tr>
<tr>
<td>Sizing</td>
<td></td>
</tr>
<tr>
<td>Use Advanced Size Function</td>
<td>Off</td>
</tr>
<tr>
<td>Relevance Center</td>
<td>Coarse</td>
</tr>
<tr>
<td>Element Size</td>
<td>Default</td>
</tr>
<tr>
<td>Initial Size Seed</td>
<td>Active Assembly</td>
</tr>
<tr>
<td>Smoothing</td>
<td>Medium</td>
</tr>
<tr>
<td>Transition</td>
<td>Fast</td>
</tr>
<tr>
<td>Span Angle Center</td>
<td>Coarse</td>
</tr>
<tr>
<td>Minimum Edge Length</td>
<td>0.401920 mm</td>
</tr>
</tbody>
</table>

Statistics

- Nodes: 8852
- Elements: 5255
- Mesh Metric: None

Figure 12: Force convergence of given load under plasticity condition

Figure 13: Iteration of load with respective time

6. Results & Discussion

Figure 14: Maximum equivalent stresses for structural steel circular cross section

Figure 15: plot between time Vs Stresses
Figure 16: Equivalent strain of circular cross section

Figure 17: plot between time Vs Strain

Figure 18: Total deformation of circular cross section

Figure 19: Status of the contact region for circular cross section

Figure 20: pressure of contact region for circular cross section
Figure 19: plot between time Vs Frictional stresses

Figure 20: Frictional stresses of contact region for circular cross section

Figure 21: plot between times Vs Pressure

The above figures 11 to 21 shows the structural steel material of circular cross section the above procedure should follow the trapezoidal cross section and also for the cast iron.

Table 3 shows the Values of circular cross section for two materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Stress(MPa)</th>
<th>Strain</th>
<th>Deformation</th>
<th>Pressure</th>
<th>Frictional stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular cross section</td>
<td>12.983</td>
<td>0.0000</td>
<td>8.2315</td>
<td>46.91</td>
<td>0.19621</td>
</tr>
<tr>
<td>Structural steel</td>
<td>13.117</td>
<td>0.0001</td>
<td>17.245</td>
<td>44.965</td>
<td>0.17702</td>
</tr>
<tr>
<td>Cast iron</td>
<td>13.117</td>
<td>0.0001</td>
<td>17.245</td>
<td>44.965</td>
<td>0.17702</td>
</tr>
</tbody>
</table>

Table 4 shows the Values of circular cross section for two materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Stress(MPa)</th>
<th>Strain</th>
<th>Deformation</th>
<th>Pressure</th>
<th>Frictional stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezoidal cross section</td>
<td>13.117</td>
<td>0.0000</td>
<td>8.9597</td>
<td>45.689</td>
<td>0.18997</td>
</tr>
<tr>
<td>Structural steel</td>
<td>13.117</td>
<td>0.0001</td>
<td>17.237</td>
<td>44.973</td>
<td>0.17707</td>
</tr>
<tr>
<td>Cast iron</td>
<td>12.983</td>
<td>0.0001</td>
<td>17.237</td>
<td>44.973</td>
<td>0.17707</td>
</tr>
</tbody>
</table>

We considered two types of cross section models and two different materials. The above table describes the total deformation and equivalent stresses, contact pressures and frictional stresses of different models for different materials. If we observe the values the stresses are all most nearer for the both cross sections and mainly we have to observe the contact pressures and frictional stresses for both cross sections comparatively structural steel having more bearable comparatively cast iron. The main objective is cross section the above tables says that the values of circular cross section and trapezoidal cross section are nearer so we can chose the trapezoidal of structural steel it can bear the stress because of contact and friction are almost same. For future scope of this work we can go with shape...
optimization and also we can do the parametric optimization by using design of experiments.

7. References