Abstract: - Nowadays, at-speed scan based testing is used for testing the performance of the given circuit. In the case of At-speed scan based test, excessive capture power due to power risky pattern may cause significant current demand, resulting in the IR-drop problem. In proposed method, all power risky patterns are discarded and considering power safe patterns and refining them. WSA switching activity is used to estimate whether the given pattern is power risky or power safe pattern. LOC clocking scheme, which is widely used to detect transition faults in scan-based designs and the capture power problem. Our test generation procedure includes two processes, namely, test pattern refinement and low-power test pattern regeneration. The first process is used to refine the power-safe patterns to detect faults originally detected only by power-risky patterns. If some faults are still undetected after this process, the second process is applied to generate new power-safe patterns to detect these faults. The patterns obtained using the proposed procedure are guaranteed to be power-safe for the given power constraints. Experimental results on ISCAS'89 and ITC'99 benchmark circuits show that an average of 75% of faults originally detected only by power-risky patterns can be detected by refining power-safe patterns and the remaining undetected faults can be detected by the low-power test generation process.

Index terms – at speed scan based testing, WSA, LOC clocking scheme, Transition fault, automatic test pattern generation (ATPG), fan-out.

1. INTRODUCTION:

Scan-based ATPG solutions for at-speed testing ensure high test coverage, simple structure, strong diagnostic support and reasonable development effort. This article explores applying at-speed scan testing. We introduce new strategies to optimize ATPG to apply specific clock sequences that are valid with the circuit operation. We also use these strategies to have ATPG generate tests that use internal clocking logic.

The test power required to load or unload test data with shift clock control is called shift power, and the power required to capture test responses with an at-speed clock rate is called capture power. Excessive shift power can lead to high temperatures that can damage the circuit under test (CUT) and may reduce the circuit’s reliability. Excessive capture power induced by test patterns may lead to large current demand and induce a supply voltage drop, known as the IR-drop problem. This would cause a normal circuit to slow down and eventually fail the test, thereby inducing unnecessary yield loss.

To estimate shift power and capture power, several metrics have been proposed. Among these metrics, the one employing the circuit level simulation may be the most accurate one. However, this method is time consuming and memory intensive. The toggle count metric considers the state changes of nodes (FFs or gates) and the weighted switching activity (WSA) metric considers both node state changes and fanouts of nodes. Metrics that consider paths are also proposed. The critical capture transition (CCT) metric assesses launch switching activities around critical paths and the critical area targeted (CAT) metric estimates launch switching activities caused by test patterns around the longest sensitized path. In this paper, we will employ the WSA metric as it is highly correlated to the real capture power and has been used in most related work to determine power-safe test patterns.

Launch on-capture (LOC) scheme is proposed to reduce the capture power, which allows only partial scan cells to be activated during the capture cycle. Some clock gating schemes have also been proposed to limit the test power consumption. In general, the hardware-based methods effectively reduce test power. However, they may increase circuit area and degrade circuit performance, and may be incompatible with existing design flows. The software-based methods attempt to
generate power safe test patterns that will not consume excess power during testing by modifying the traditional automatic test pattern generation (ATPG) procedure or by modifying predetermined test sets. These methods are generally based on the X-filling technique to assign fixed logic values to don’t care bits (X-bits) in test patterns to minimize test power dissipation.

Low-capture power (LCP) X-filling method is proposed and incorporated into the dynamic compaction process of the test generation flow to reduce the capture power. Although these methods can achieve a large reduction in capture power, they often increase the test data volume in comparison with that produced by conventional at-speed scan test methods due to the fact that during the dynamic compaction process, many X-bits that can be assigned to detect more faults are reserved to reduce capture power. Instead of modifying the ATPG procedure, some post-ATPG methods modify a given test set by using X-filling to reduce as much test power as possible or to satisfy the power constraints. A propose method, named adjacency fill, which assigns deterministic values to the X-bits in line with the adjacent bit values to reduce shift power.

For example, given the test pattern (1, X, X, 1, 0), the X-bits in this pattern are filled as (1, 1, 1, 1, 0). Proposes preferred fill to reduce the capture power. This method fills X-bits according to the signal probability of pseudo primary outputs (PPOs). In this approach, the X-bits in primary inputs (PIs) and pseudo primary inputs (PPIs) are first randomly filled with the one probability of 0.5. The output signal probability of each gate is then calculated and propagated to the PPOs.

2. RELATED WORK:

Unlike previous methods that reduce the capture power by modifying power-risky patterns, this paper proposes modifying only power-safe patterns to address this issue. It can be seen that the patterns that can detect more faults normally have larger switching activity and lower X-bit ratios, and the number of detected faults decreases drastically with increasing X-bit ratio.

Hence, filling X-bits in power-risky patterns may not be efficient as they tend to have lower X-bit ratios. In contrast, power-safe patterns usually have higher X-bit ratios and many unused X-bits. Therefore, using the X-bits in power safe patterns to detect faults within the power constraints may be more efficient than using those in power-risky patterns. Based on the above observation, this paper proposes a novel test pattern refinement procedure to determine a power safe test set with the LOC clocking scheme.

The proposed procedure contains two processes, namely, test pattern refinement and low-power test pattern regeneration. Given a pre-generated compacted partially-specified test set without any power constraints, the power-risky patterns are all dropped. This will make faults that were detected only by the power risky patterns become undetected. The test pattern refinement process then tries to properly fill the X-bits in the power safe patterns such that the power-risky faults can be detected with the power constraint still being satisfied. If some power risky faults remain undetected after this process, the low-power test pattern regeneration process is employed to generate more power-safe test patterns for these faults.

3. PRELIMINARIES:

This section first describes the LOC clocking scheme, which is widely used to detect transition faults in scan-based designs and the capture power problem. Then, it introduces the power metrics employed to verify the effectiveness of the proposed procedure.

3.1. LOC clocking scheme:

The architecture of the scan-based design and the LOC clocking scheme are shown in Fig.1. At-speed scan testing with LOC scheme. Depending on the scan enable signal, the circuit operates in either shift mode or capture mode during testing.

In shift mode, where SE is one, the test pattern is shifted into scan cells by a series of low-speed test clock pulses to initialize the circuit state. Once the pattern is shifted in, the circuit operates in capture mode, where SE is 0. One clock pulse is then applied to the circuit to create the transition for the target faults, and another clock pulse is then used to capture the test response from the combinational logic of the circuit using the at-speed functional clock.

These two consecutive clock pulses include a launch cycle (L) and a capture (C) cycle, as shown in Fig. 1. Finally, the test response in the scan cells is shifted out for observation.
3.2 Calculation of capture power for the given circuit:

As mentioned before, in this paper the WSA metric is used to calculate the circuit’s switching activity. The WSA of a gate is the number of capture transitions \((ti)\) at the gate multiplied by \((\text{gate’s fanout} + 1)\). If a transition \((0 \rightarrow 1\text{ or } 1 \rightarrow 0)\) occurs at gate \(i\), \(ti\) is set to 1; otherwise \(ti\) is set to 0.

If the gate is connected directly to a primary output, then its fanout is set to 0. The WSA of whole circuit for one test pattern is the sum of the WSA for each gate in the circuit, shown as follows:

\[
\text{WSA} = \sum_{\text{gate}} t_i \times (\text{fanout}_i + 1)
\]

This WSA is called the maximum WSA, since all of the gates in the circuit transit in the launch.

When calculating the capture power of partially specified test patterns, it is necessary to estimate the number of transitions caused by the X-bits at the internal gates.

A simple method is to assign a weight to the transition \((ti)\) of each X-bit to calculate the switching activity with the previously mentioned power metrics. However, it is difficult to determine a proper weight for an X-bit. If the weight of X-bits is too large, then a power-safe pattern may be incorrectly regarded as a power-risky pattern, and vice versa. Another method is to fill the X-bits with 0 or 1 and then to calculate the capture power of patterns. There has been extensive research on X-filling techniques.

In this paper, the ACF X-filling technique is used to temporarily fill the X-bits and calculate the capture power of partially-specified test patterns. The reason to choose the ACF X-filling technic obtained capture power is lower than most other X-filling techniques, and thus, is a good candidate to calculate the capture power of partially specified patterns before using our proposed technique.

4. POWER-SAFE TEST PATTERN DETERMINATION:

This section first uses a simple example to illustrate the main idea of the proposed procedure. Then, it describes the overall flow and its details.

4.1 Main Idea:

The main idea of this paper is to utilize the X-bits in power-safe patterns to detect as many faults that are previously detected only by power-risky patterns as possible. If there are still undetected faults, then a low-power pattern generation process is used to generate patterns to detect the remaining faults. The following is an example to illustrate the main idea.

Considering the circuit in Fig2, three transition faults, \(f_1, f_2\), and \(f_3\), are detected by two pattern pairs \(P1 = <v1, v2> = <X, X, 1, 0, 1, 0>, (X, X, 1, 1, 0, 0)\) and \(P2 = <v3, v4> = <0, X, 1, X, X, X>, (1, X, 1, X, X, X)\). When pattern \(P1\) is applied to the circuit, the output values of gates N2, N4, N6, and N7 will switch and faults \(f_2\) and \(f_3\) can be detected by \(P1\). When pattern \(P2\) is applied to the circuit, the output values of gate N5 will switch and fault \(f_1\) can be detected by \(P2\). The capture powers of \(P1\) and \(P2\) calculated using WSA are 6 (=2+2+1+1) and 1 (because gate N5, N6, and N7 are each connected to an output directly, and their fanouts are set to 0), respectively.

If the power threshold \(P_{th}\) of this circuit is set to five and all of the wires with an X-signal have no transitions, the WSA of \(P1\) is higher than \(P_{th}\), and the WSA of \(P2\) is lower than \(P_{th}\). Then, \(P1\) is a power-risky pattern and \(P2\) is a power-safe pattern. Based on our main idea, pattern \(P1\) is dropped since its WSA is higher than \(P_{th}\). Now, \(f_2\) and \(f_3\) become
undetected. To avoid fault coverage loss, the power-safe pattern P2 is refined to detect more faults.

\[P2' = (0, X, 1, X, 1, 0), (1, X, 1, X, 0, 1) \]

If the refined \(P2' \) can detect \(f_2 \), as shown in Fig. 3, the WSA of the refined \(P2' \) becomes 4 (=1+2+1). Now, the refined \(P2' \) can detect both \(f_1 \) and \(f_2 \) without violating the power threshold. It should be noted that the capture power of the refined power-safe pattern also increases because the power-safe pattern detects more faults (the WSA of \(P2' \) is 1 in Fig. 3(b), but the WSA of the refined \(P2' \) in Fig. 4(a) is 4). Therefore, to ensure that the WSA of the refined pattern does not exceed the power threshold, it must be calculated and checked again. Since \(f_3 \) remains undetected, the fault coverage is still less than the original. In order to recover the fault coverage loss, another power-safe pattern, \(P3 = (v5, v6) = (X, X, 1, 0, X, X) \), can be generated to detect \(f_3 \), as shown in Fig. 4(b). By using the two power-safe pattern pairs, refined \(P2' \) (WSA = 4) and \(P3 \) (WSA = 3), all three faults can be detected without test data inflation, loss of fault coverage, and capture power issues.

4.2 Overall Flow of Proposed Procedure:

Based on the main idea, a technique is proposed to determine a test set such that the power constraint is satisfied and the test data inflation is minimized. Fig. 5 shows an overview of the proposed capture-power-safe test pattern determination procedure. The inputs to this procedure include a pre-generated partially specified test set \(T \) for the LOC test, a list \(F \) of transition faults that are detected by \(T \), and a predefined power threshold \(P_{th} \) to determine whether a pattern is power-risky.

In order to obtain the power-safe patterns \(TS \) and the power-risky fault list \(F_r \), at step 1, the capture power of each pattern in \(T \) is calculated and compared with \(P_{th} \). The power-risky fault list \(F_r \) is the list of faults that are only detected by power-risky patterns. To get a deterministic capture power of the partially specified pattern, the X-bits must be temporarily filled with zero or one. In the proposed procedure, the ACF technique is used to fill these X-bits temporarily to calculate capture power. If the pattern’s capture power is less than \(P_{th} \), the pattern is added into \(TS \); otherwise, the pattern is dropped. The faults that are only detected by the power-risky patterns are identified by fault simulation using \(TS \) and \(F \). These power-risky faults are added into \(F_r \).

There may exist some power-safe patterns that can detect power-risky faults in \(F_r \) but are not part of the original test set. Thus it can only be said that these faults are detected only by power-risky patterns in the original test set. The obtained power-safe test set \(TS \) and power-risky fault list \(F_r \) will then serve as the inputs to the test pattern refinement process.
In the test pattern refinement process, values are assigned to X-bits of power-safe patterns in \(T \), under the \(P_{th} \) limitation to detect as many power-risky faults in \(F_r \) as possible. After this step, a fully specified power-safe test set \(T_{ms} \) and an undetected fault list \(F_u \) are determined. If the refined power safe test set \((T_{ms}) \) detects all of the power-risky faults, the pattern determination procedure is complete. Otherwise, the low-power test pattern generation (step) is conducted to generate new power-safe test patterns to detect these faults.

The newly generated power-safe test patterns are stored in \(T_{ns} \). The power-risky faults that still cannot be handled by the proposed procedure are considered as unresolved and are put into an unresolved fault list \(F_{ur} \). With the above processes, a power-safe test set, including the refined power-safe test set \(T_{ms} \) and newly generated test set \(T_{ns} \), can be determined.

5. ALGORITHM FOR TEST PATTERN REFINEMENT PROCESS:

The goal of the test pattern refinement process is to utilize the X-bits in power-safe patterns to detect as many power-risky faults as possible. This process ends when there are no remaining faults in \(F_r \) or all the power-safe patterns in \(T_s \) have been refined. The pseudo code is shown in Fig. 6.

In each iteration, an unrefined power-safe pattern is selected as \(sel{-}pt \) (line 2). Then, the X-filling is applied to \(sel{-}pt \) for detecting power-risky faults (line 3). In this step, a commercial ATPG tool is configured to keep the specified bits of \(sel{-}pt \), and the ATPG tool generates a partially specified test set called candidate test set \(T_c \) for power-risky faults. For example, if \(sel{-}pt \) is \((1, 0, X, X, 1) \), the candidate test set \(T_c \) may include \(P1 = (1, 0, 0, 0, 1) \) and \(P2 = (1, 0, X, 0, 1) \), but not \(P3 = (0, 0, X, X, 0) \) because the values of some specified bits of \(P3 \) are different from those of \(sel{-}pt \). The capture power of each test pattern in \(T_c \) is then calculated by using the power metrics of WSA.

After the capture power of each candidate pattern is obtained, the patterns with capture power higher than \(P_{th} \) are removed from \(T_c \) (line 5). If \(T_c \) is not empty, a fully specified pattern that detects the most faults in \(F_r \) is chosen as \(max{-}pt \), and the faults detected by \(max{-}pt \) are dropped from \(F_r \) (line 7–8). The pattern \(max{-}pt \) is then copied to \(sel{-}pt \), and \(sel{-}pt \) becomes fully specified and is marked as refined (line 9–11). The fault list \(F_r \) is checked if it has any power-risky faults. If \(F_r \) is empty, the remaining unrefined power-safe patterns in \(T_s \) are replaced with the corresponding prefilled patterns in Step 1 these patterns are added to \(T_{ms} \). Then, the refinement process is terminated. Otherwise, the next pattern will be selected for modification (line 12–14). If some power-risky faults still remain undetected after the while loop, these faults will be put in the undetected fault list \(F_u \) (line 17–19), which will be processed by the low-power test pattern generation process, which is discussed in the next section. In summary, after the test pattern refinement process, a refined fully specified power-safe test set \(T_{ms} \) is obtained.

5.1 Algorithm for Test Pattern Refinement:

Input: a partially specified power safestest set \(T_s \), a power risky fault list \(F_u \) and a user defined power threshold \(P_{th} \).

Output: a refined fully specified power safe test set \(T_{ms} \) and undetected fault list \(F_u \).

1. **While** an unrefined pattern exists in \(T_s \) **then**
2. Sel \(pt \) select an unrefined pattern from \(T_s \)
3. Perform ATPG constrained by the partially specified pattern \(sel{-}pt \) to detect faults in \(F_r \) and generate a partially specified candidate test set \(T_c \)
4. Perform low-power X-filling on \(T_c \). Each pattern in \(T_c \) becomes fully specified, and its capture power is calculated.
5. Remove the pattern that have capture power > \(P_{th} \) from \(T_c \)
6. If \(T_c \) is not empty **then**
7. \(max{-}pt \) select a fully specified pattern from \(T_c \) that can detect the largest no. of faults in \(F_r \)
8. drop the faults detected by \(max{-}pt \) from \(F_r \)
9. Copy \(max{-}pt \) to \(sei{-}pt \)
10. **end if**
11. mark the pattern \(sel{-}pt \) as refined and add it to \(T_{ms} \)
12. If \(F_r \) is empty **then**
13. replace the remaining undefined pattern in \(T_s \) with the corresponding prefilled patterns from step 1 and these patterns to \(T_{ms} \)
14. **break** the while loop
15. **end if**
16. **endwhile**
17. If \(F_r \) is not empty **then**
18. put the remaining power risky faults in \(F_u \)
19. **end**

Algorithm for Low Power Test Generation Process:

The low-power test generation process attempts to generate a new power-safe test set to detect all the undetected faults and
minimize the test data inflation at the same time. In order to achieve this goal, this process uses a dynamic data compression.

In this process, a commercial ATPG tool is first used to generate a compact partially specified test set \(T_{tmp} \) for \(Fu \) (line 2). After the capture power of each pattern in \(T_{tmp} \) is calculated, the patterns with capture power greater than \(P_{th} \) are removed from \(T_{tmp} \) (line 3–4). Similar to the refinement process, the pattern which detects most faults is selected as \(max-\text{pt} \) if \(T_{tmp} \) is not empty (line 5–6). Then \(max-\text{pt} \) is refined by the test pattern refinement process in an attempt to increase its detected faults (line 7). These detected faults are dropped from \(Fu \) and \(max-\text{pt} \) is added to the test set \(T_u \) (line 8–9). Note that at this moment the generated power-safe patterns may be unable to detect all faults in \(F_u \) (line 10) because the generated patterns may only have a small number of X-bits due to dynamic data compression in ATPG. Therefore, the following steps consider only a small fraction of undetected faults for pattern generation based on the observation that the patterns generated for a smaller number of faults tend to have a larger number of X-bits and hence a higher chance to be power-safe.

In the experiment, 10% of undetected faults are randomly selected from \(F_u \) as \(F_{tmp} \) (line 11–12). The ATPG tool then generates a partially specified test set \(T_{tmp} \) and the capture power of each patterns in \(T_{tmp} \) is calculated. The patterns with capture power higher than \(P_{th} \) are removed.

If ATPG cannot generate any power-safe pattern for the current \(F_{tmp} \), the faults in \(F_{tmp} \) will be added to an unresolved fault list \(Fur \) and removed from \(Fu \) (line 16–18); otherwise, this process goes to line 6 to process the power-safe patterns generated for \(F_{tmp} \) (line 15). This procedure is repeated until there are no faults in \(F_u \). Then, a newly generated power-safe test set \(T_u \) and unresolved faults \(F_u \) are obtained.

5.2 Algorithm for Low-Power Test Pattern Generation

Input: an undetected fault list \(F_u \) and a user defined power threshold \(P_{th} \)

Output: a newly generated power safe test set \(T_u \) and an unresolved fault list \(F_u \)

1. **While** \(F_u \) is not empty **then**
2. Generate a partially specified test set \(T_{tmp} \) for \(Fu \)
3. Calculate the capture power of each pattern in \(T_{tmp} \)
4. Remove the patterns that have capture power greater than \(P_{th} \) from \(T_{tmp} \)
5. **If** \(T_{tmp} \) is not empty **then**
6. \(max-\text{pt} \) select the pattern with largest fault detection
7. Perform test pattern refinement process with \(max-\text{pt} \) to detect faults
8. Remove all faults detected by \(max-\text{pt} \) from \(Fu \)
9. Add \(max-\text{pt} \) to \(T_u \)
10. **Else then**
11. **Generate** \(T_{tmp} \) by randomly selecting a sub set of \(Fu \)

12. **Generate** a partially specified test set \(T_{tmp} \) for \(Fu \)
13. Calculate the capture power of each pattern in \(T_{tmp} \)
14. Remove the patterns that have capture powers greater than \(P_{th} \) from \(T_{tmp} \)
15. **If** \(T_{tmp} \) is not empty **then goto** line 6
16. **Else then**
17. Add the faults in \(T_{tmp} \) to \(Fu \)
18. Remove the faults in \(T_{tmp} \) from \(Fu \)
19. **end**
20. **end**
21. **endwhile**

6. EXPERIMENTAL RESULTS:

The proposed procedure was implemented in the C language and a commercial ATPG tool was used in the procedure to generate test patterns. In order to quickly calculate the WSAs of patterns, an event-driven power calculator was implemented. The experiments were conducted on ISCAS’89 and ITC’99 benchmark circuits using a 2.5-GHz Intel Xeon CPU with 16 GB of memory on a Linux platform. These circuits were synthesized using a commercial DFT compiler. The statistics of these circuits are listed in Table I, where the columns \([sc]\) and \([F]\) list the number of scan cells and uncollapsed testable transition faults, respectively. The columns \([Tatpg]\) and \([X-bits]\%\) show the number of partially specified test patterns and the average percentage of X-bits in the initial test set \(Tatpg \), respectively. The column \(max \) WSA lists the circuit’s theoretical maximum WSA, which is obtained by assuming that all gates in the circuit are switched simultaneously. The fault list \(F \) and the initial test set \(Tatpg \) were generated by a commercial ATPG tool.

6.1. Test pattern refinement:

The effectiveness of the test pattern refinement process was investigated for power thresholds of 15% and 20% of max WSA. The results for reducing the number of powerrisky faults by the test pattern refinement process are listed in Tables I and II. The columns \([Ts]\) and \([Fr]\) provide the initial number of power-safe patterns and the number of powerrisky faults which are only detected by the powerrisky patterns. The number of remaining powerrisky faults after the process is shown in column \([Ful]\). The reduction ratio of the number of powerrisky faults in column \([Fr]\) \(\text{Red} \% \) is calculated by \((|Fr| - |Ful|) / |Fr| \times 100 \).

TABLE I

<table>
<thead>
<tr>
<th>Power-risky faults reduction With Test Pattern Refinement</th>
<th>Only on ISCAS’89 Benchmark</th>
</tr>
</thead>
</table>

Available online: http://edupediapublications.org/journals/index.php/IJR/
From Table I, it can be seen that the number of power-risky faults was reduced by 64.55% and 76.7% on average with the test pattern refinement process for power thresholds of 15% and 20% of max WSA, respectively. This means that refining the power-safe patterns can significantly increase the detection of power-risky faults given the power constraints. In Table I, the power-risky fault reduction ratios of many circuits are even higher than 90%. In particular, the reduction ratio for s13207 is 100% when the threshold is 20%, which means that refined power-safe patterns can detect all power-risky faults, and thus there is no need to generate new low-power patterns for this circuit. However, it can also be seen that for some cases the method is inefficient. For example, test cases s1423 and s35932 have very low reduction ratios (only 9.74% and 2.27% for 15% threshold, respectively). This is due to the initial numbers of power-safe patterns in s1423 and s35932 being extremely small; fewer than ten power-safe patterns can be used in these cases. Therefore, the refined power-safe test patterns cannot detect many power-risky faults. From Table I, it can also be seen that when the power threshold is increased, the number of power-safe patterns increases and thus more power-risky faults can be detected by refining power-safe patterns.

The results for the ITC’99 benchmark are similar to those for ISCAS’89 benchmark, as shown in Table II. The average reduction ratios of power-risky faults are 67.04% and 79.83% for 15% and 20% of max WSA, respectively. In cases b17 to b19, it can be seen that power-risky fault reduction ratios are higher than 97%. The ratio reaches 100% when Pth is 20% of WSA. In cases b20 to b22, the power-risky fault reduction ratios are 26.9% to 39.6% when Pth is 15%, and 56.7% to 62.5% when Pth is 20%. This is also due to these cases having fewer power-safe patterns under the same power threshold.

6.2 Low-Power Test Pattern Regeneration

The effectiveness of the low-power test pattern regeneration process was examined next. This process is used to generate patterns to detect the undetected power-risky faults, Fu. The newly detected faults are removed from Fu and the patterns detecting these faults are added into Tns. The remaining faults are unresolved faults. Table III shows the experimental results. The column |Fu| lists the number of unresolved faults that cannot be solved using the proposed low-power test pattern regeneration for a given Pn. The column |Tns| lists the number of newly generated power-safe patterns and the column |Ta| lists the number of final power-safe patterns which is the sum of |Ta| and Tnpg over |Tnpg|, i.e., (|Ta|+|Tnpg|)/|Tnpg| *100%.

<table>
<thead>
<tr>
<th>CKT</th>
<th>15% of max WSA</th>
<th>20% of max WSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red%</td>
</tr>
<tr>
<td>s1423</td>
<td>7 3305 2983 9.74</td>
<td>7 2871 2046 28.74</td>
</tr>
<tr>
<td>s5378</td>
<td>4 7987 2383 70.16</td>
<td>9 5425 683 87.41</td>
</tr>
<tr>
<td>s9234</td>
<td>134 9620 2923 69.62</td>
<td>246 6514 539 91.73</td>
</tr>
<tr>
<td>s1207</td>
<td>248 2892 44 96.66</td>
<td>287 7732 0 100</td>
</tr>
<tr>
<td>s15850</td>
<td>116 11416 627 94.51</td>
<td>170 5599 45 99.20</td>
</tr>
<tr>
<td>s35932</td>
<td>1 77582 75284 2.27</td>
<td>4 77491 59365 23.39</td>
</tr>
<tr>
<td>s38417</td>
<td>177 89504 20828 77.24</td>
<td>210 81905 7010 91.44</td>
</tr>
<tr>
<td>s38584</td>
<td>312 42421 2927 93.10</td>
<td>378 15429 1283 91.68</td>
</tr>
<tr>
<td>Avg.</td>
<td>64.55</td>
<td>76.70</td>
</tr>
</tbody>
</table>

TABLE III

Power-Risky Faults Reduction With Test Pattern Refinement Only on ITC’99 Benchmark

<table>
<thead>
<tr>
<th>CKT</th>
<th>15% of max WSA</th>
<th>20% of max WSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red%</td>
</tr>
<tr>
<td>b17</td>
<td>2192 26117 694 97.34</td>
<td>2617 2499 0 100</td>
</tr>
<tr>
<td>b18</td>
<td>3862 17838 0 100</td>
<td>3976 1097 0 100</td>
</tr>
<tr>
<td>b19</td>
<td>6486 62187 44 99.93</td>
<td>6590 127 0 100</td>
</tr>
<tr>
<td>b20</td>
<td>144 112363 67847 39.62</td>
<td>383 81901 30716 62.50</td>
</tr>
<tr>
<td>b21</td>
<td>148 112651 82328 26.92</td>
<td>401 83802 36289 56.70</td>
</tr>
<tr>
<td>b22</td>
<td>158 159887 98456 38.42</td>
<td>411 121278 48736 59.81</td>
</tr>
<tr>
<td>Avg</td>
<td>67.04</td>
<td>79.83</td>
</tr>
</tbody>
</table>

When Pn is 15% of max WSA, the final pattern number is larger than that obtained with Pn of 20% of max WSA, and in some cases is even higher than the initial pattern number. This is because when the power threshold is lower, more X-bits need to be specified for power reduction, which reduces the detectability of these patterns. Therefore, more power-safe patterns need to be generated to detect power-risky faults.

TABLE III

Experimental Result of Low-Power Test Pattern Regeneration
7. CONCLUSION

Capture-power-safe test pattern determination procedure to address the capture power problem is proposed. The test pattern refinement process in the proposed procedure refines power-safe patterns to detect the power-risky faults and discards the power-risky patterns to ensure the capture power safety. The capture power of newly generated patterns is also guaranteed to be under the power constraints. The experimental results show that more than 75% of power-risky faults can be detected by refining the power safe patterns, and that the required test data volumes can be reduced by 12.76% on average under the appropriate power constraints without fault coverage loss.

8. REFERENCES