Experimental Investigation on Effect Of Glass Fiber On Mechanical Properties And Stress Strain Behaviour Of Concrete M70

Yele Venkat Abhilash
M.Tech. (Structural Engineering)
Vaagdevi college of engineering, Warangal, India

Dr. S Sunil Pratap Reddy
Professor, Department of Civil Engineering
Vaagdevi college of engineering, Warangal, India

Abstract
Throughout the past periods the construction field has experienced a growing interest in the advantages of fibre reinforcement in concrete. Amongst the diverse fibres available, worldwide, a great deal of research is currently being conducted concerning the use of glass fibre as reinforcement in concrete. Glass fibre reinforced concrete composites contain high strength glass fibres that are surrounded by a cementitious medium. In this shape, both the fibres and the environment maintain their natural individual chemical characteristics. In the present experimental investigation the alkali resistance Glass Fibres has been used to study the effect on compressive strength and spilt tensile strength on M70 grades by 0.01%, 0.03%, 0.06%, 0.1% of concrete Keywords – strength properties.

KEYWORDS: GFC, glass fibres, compressive strength, spilt tensile strength.

INTRODUCTION
Glass fiber reinforced concrete (GFRC) also called GRC or FRC is a cementitious, composite material, cast in thin shell shapes for use in construction. Glass fibre reinforced concrete is one of the most versatile building materials available.

2. REVIEW OF LITERATURE
Shah Surendra and Rangan [1-4], in their investigations conducted uni-axial compression test on fiber reinforced concrete specimens. The results shown the increase in strength of 6% to 17% compressive strength, 18% to 47% split
tensile strength, 22% to 63% flexural strength and 8% to 25% modulus of elasticity respectively. Byung Hwan Oh [5], in their investigations, the mechanical properties of concrete have been studied, these results shown the increase in strength of 6% to 17% compressive strength, 14% to 49% split tensile modulus of elasticity respectively. Barrows and Figueiras [6], in their investigations the mechanical properties of concrete have been studied. These results shown the increase in strength of 7% to 19% compressive strength, 19% to 48% split tensile strength, 25% to 65% flexural strength and 7% to 25% modulus of elasticity respectively. Chen S. [7] investigated the strength of 15 glass fiber reinforced and plain concrete ground slabs. The slabs were 2x2x0.12m, reinforced with hooked end steel fibers and mill cut steel fibers. Dwaraknath and Nagaraj [8] predicted flexural strength of glass fiber concrete by these parameters such as direct tensile strength, split cylinder strength and cube strength. James and Beaudoin [9] stated that the minimum fiber volume dosage rate for steel, glass and polypropylene fibers in the concrete matrix was calculated approximately 0.31%, 0.40% and 0.75%. Patton and Whittaker [10] investigated on steel fiber concrete for dependence of modulus of elasticity and correlation changes on damage due to load. Rossi et. al [11], analyzed that the effects of steel fibers on the cracking at both local level (behavior of steel fibers) and global level (behavior of the fiber/cement composite) were dependent to each other.

3. MATERIALS USED

3.1 Cement

Ordinary Portland cement of 53 grades available in local market is used in the investigation. The cement used has been tested for various proportions as per IS: 4031-1988 [15] and found to be conforming to various specifications of IS: 12269-1987. The specific gravity was 3.15 and the fineness was 3200 cm2/gm.

3.2 Coarse Aggregate

Crushed stone metal with a maximum size of 12.5 mm from a local source conforming to IS: 383-1970 [13] was used. The specific gravity was found to be 2.7.

3.3 Fine aggregate

Fine aggregate can be natural or crushed. Locally available river sand passing through 4.75 mm IS sieve and it conforms to zone II (As per IS 383 – 1970 [13]). The specific gravity and fineness was found to be 2.6 and 2.63.

Table – 1: Fineness modulus of Fine Aggregate.
<table>
<thead>
<tr>
<th>Sieve size (mm)</th>
<th>% Weight Retained</th>
<th>Cumulative weight retained</th>
<th>Weight retained(gms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.36</td>
<td>10</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>1.18</td>
<td>25</td>
<td>35</td>
<td>250</td>
</tr>
<tr>
<td>600µ</td>
<td>25</td>
<td>60</td>
<td>250</td>
</tr>
<tr>
<td>300µ</td>
<td>30</td>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>150µ</td>
<td>10</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

Fineness modulus=2.9

3.4 Water

Potable water was used in the experimental work for both mixing and curing specimens.

3.5 Glass fibre

The glass fibres used are of Cem-fil-anticrack with modulus of elasticity 75 GPa, filament diameter – 14 microns, specific gravity 2.66, length 12 mm and having the aspect ratio of 857.1. The number of fibres per 1 kg is 212 million fibre.

Fig.-1: Glass fibers used

4. MIX PROPORTIONS

The mixture proportioning was done according the Indian Standard Recommended Method IS 10262- 2009[12]

Table -2: Mix Proportion kg/m³
Mix	Fiber/Powdered fiber.	Coarse aggregate	Fine aggregate	Cement	Fly ash	Silica fume	SP43 0% of cement	W/C
M70 | 6mm fiber | 1128.86 | 521.18 | 435.1 | 100.406 | 22.32 | 1.7 | 0.29 |

5. EXPERIMENTAL PROGRAM

In this study, the effect of glass fibers is studied on grade M70. The fibers were added at a dosage of 0.03%, 0.06% and 0.1% to the volume of concrete. An average of three cubes and three cylinders is taken to evaluate the compressive strength and split tensile strength of glass fiber reinforced concrete. The effect of glass fiber on the workability of concrete is evaluated by slump cone test. The compressive and split tensile strength were tested on universal testing machine. A total of 24 cubes of standard size 150mm*150mm*150mm were cast for compressive strength and 24 cylinders of standard size 300mm height and 150mm diameter were cast for split tensile strength. The testing of materials is done as per Indian standards [14,16].

![Testing of specimens](image)

6. RESULTS AND DISCUSSIONS

6.1 Effect on workability

Slump cone test is used to evaluate the effect of glass fiber on concrete. The slump cone values are represented in Table 2. Glass fiber have effected the workability...
of concrete. The effect has increased with the increase dosage of glass fibers. Addition of glass fiber has made concrete stiffer

Table 3 C.F values of M70 concrete.

<table>
<thead>
<tr>
<th>Fiber & Powder fiber %</th>
<th>C.F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0.88</td>
</tr>
<tr>
<td>0.03%F</td>
<td>0.85</td>
</tr>
<tr>
<td>0.06%F</td>
<td>0.83</td>
</tr>
<tr>
<td>0.1%F</td>
<td>0.81</td>
</tr>
</tbody>
</table>

6.2 Effect of Compressive Strength

The strength of concrete is usually defined and determined by the crushing strength of 150mm x 150mmx150mm, at an age of 28 days. It is most common test conducted on hardened concrete as it is an easy test to perform and also most of the desirable characteristic properties of concrete are qualitatively related to its compressive strength. Steel mould made of cast iron dimension 150mm x 150mmx150mm used for casting of concrete cubes were used. The mould and its base rigidly damped together so as to reduce leakages during casting. The sides of the mould and base plates were oiled before casting to prevent bonding between the mould and concrete. The cube was then stored for 24 hours undisturbed at temperature of 18°C to 22°C and a relative humidity of not less than 90% (IS 516-1959).

It also stated in IS 516-1959 that the load was applied without shock and increased continuously at the rate of approximately 140 Kg/sq cm/ min until the resistance of specimen to the increasing loads breaks down and no greater load can be sustained. The maximum load applied to the specimen was then recorded as per IS: 516-1959. The testing of cube under compression were shown in figure 3. Test results are shown in Table 5.

The compressive strength was calculated as follows:

Compressive strength (MPa) = Failure load / cross sectional area.

Table 4 Compressive strength values of M60 grade concrete.
Fiber & Powder fiber %	**Compressive Strength (N/mm²)**	**Percentage Increase**
0% | 73.26 | 0
0.03% F | 75.126 | 2.55
0.06% F | 76.06 | 3.83
0.1% F | 76.47 | 4.39

Effect on Stress-Strain behavior of M70 grade of concrete for various % of fiber:

![Fig 3 Stress Vs Strain (M70) plot for 0% fiber.](image)

![Fig 4 Stress Vs Strain (M70) plot for 0.03% fiber.](image)
CONCLUSIONS

1. As the percentage of fibers increases it is observed that there is reduction in compaction factor values which implies reduced workability.

2. Increase in fiber dosage increases the compressive strength of concrete.

3. With the increase in fiber dosage from 0%-0.1% there is increase in strain at ultimate stress.

REFERENCES

4. A. Shende and A. Pande, “Comparative study on Steel Fiber

