An Public Auditing Mechanism for Shared Data in the Cloud

\[^1\text{Shaik Rizwana}\]
Dr. K.V. Subba Reddy College of Engg for Women, Kurnool, A.P

\[^2\text{D. Wasiha Tahseen}\]
Asst. Professor, Dr. K.V. Subba Reddy College of Engg for Women, Kurnool, A.P

Abstract:
With cloud data services, it is commonplace for data to be not only stored in the cloud, but also shared across multiple users. Unfortunately, the integrity of cloud data is subject to skepticism due to the existence of hardware/software failures and human errors. We enhance the Oruta system in two interesting problems we will continue to study for our future work. One of them is traceability, which means the ability for the group manager (i.e., the original user) to reveal the identity of the signer based on verification metadata in some special situations. Since Oruta is based on ring signatures, where the identity of the signer is unconditionally protected, the current design of ours does not support traceability. To the best of our knowledge, designing an efficient public auditing mechanism with the capabilities of preserving identity privacy and supporting traceability is still open. Another problem for our future work is how to prove data freshness (prove the cloud possesses the latest version of shared data) while still preserving identity privacy.

Keywords: Public auditing; privacy-preserving; shared data; cloud computing

1. INTRODUCTION
Many mechanisms have been proposed to allow not only a data owner itself but also a public verifier to efficiently perform integrity checking without downloading the entire data from the cloud, which is referred to as public auditing. In these mechanisms, data is divided into many small blocks, where each block is independently signed by the owner; and a random combination of all the blocks instead of the whole data is retrieved during integrity checking. A public verifier could be a data user (e.g., researcher) who would like to utilize the owner’s data via the cloud or a third-party auditor (TPA) who can provide expert integrity checking services. Moving a step forward, Wang et al. designed an advanced auditing mechanism so that during public auditing on cloud data, the content of private data belonging to a personal user is not disclosed to any public verifiers. Unfortunately, current public auditing solutions mentioned above only focus on personal data in the cloud. We believe that sharing data among multiple users is perhaps one of the most engaging features that motivates cloud storage. Therefore, it is also necessary to ensure the integrity of shared data in the cloud is correct. Existing public auditing mechanisms can actually be extended to verify shared data integrity. However, a new significant privacy issue introduced in the case of shared data with the use of existing mechanisms is the leakage of identity privacy to public verifiers. Failing to preserve identity privacy on shared data during public auditing will reveal significant confidential information to public verifiers. Protect these confidential information is essential and critical to preserve identity privacy from public verifiers during public auditing. In this paper, to solve the above privacy issue on shared data, we propose Oruta, a novel privacy-preserving public auditing mechanism. More specifically, we utilize ring signatures to construct homomorphic authenticators in Oruta, so that a public verifier is able to verify the integrity of shared data without retrieving the entire data while the identity of the signer on each block in shared data is kept private from the public verifier. In addition, we further extend our mechanism to support batch auditing, which can perform multiple auditing tasks.
simultaneously and improve the efficiency of verification for multiple auditing tasks. Meanwhile, Oruta is compatible with random masking, which has been utilized in WWRL and can preserve data privacy from public verifiers. Moreover, we also leverage index hash tables from a previous public auditing solution to support dynamic data. A high-level comparison among Oruta and existing mechanisms is presented.

![Public Auditing Model](image)

Figure 1: Public Auditing Model

2. RELATED WORK

With cloud data services, it is commonplace for data to be not only stored in the cloud, but also shared across multiple users. Unfortunately, the integrity of cloud data is subject to skepticism due to the existence of hardware/software failures and human errors. Several mechanisms have been designed to allow both data owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the cloud server. However, public auditing on the integrity of shared data with these existing mechanisms will inevitably reveal confidential information-identity privacy-to public verifiers. In this paper, we propose a novel privacy-preserving mechanism that supports public auditing on shared data stored in the cloud. In particular, we exploit ring signatures to compute verification metadata needed to audit the correctness of shared data. With our mechanism, the identity of the signer on each block in shared data is kept private from public verifiers, who are able to efficiently verify shared data integrity without retrieving the entire file. In addition, our mechanism is able to perform multiple auditing tasks simultaneously instead of verifying them one by one. Our experimental results demonstrate the effectiveness and efficiency of our mechanism when auditing shared data integrity. In this talk, I will first discuss a number of pressing security challenges in Cloud Computing, including data service outsourcing security and secure computation outsourcing. Then, I will focus on data storage security in Cloud Computing. As one of the primitive services, cloud storage allows data owners to outsource their data to cloud for its appealing benefits. However, the fact that owners no longer have physical possession of the outsourced data raises big security concerns on the storage correctness. Hence, enabling secure storage auditing in the cloud environment with new approaches becomes imperative and challenging. In this talk, I will present our recent research efforts towards storage outsourcing security in cloud computing and describe both our technical approaches and security & performance evaluations. Cloud computing is the long dreamed vision of computing as a utility, where users can remotely store their data into the cloud so as to enjoy the on-demand high quality applications and services from a shared pool of configurable computing resources. By data outsourcing, users can be relieved from the burden of local data storage and maintenance. However, the fact that users no longer have physical possession of the possibly large size of outsourced data makes the data integrity protection in Cloud Computing a very challenging and potentially formidable task, especially for users with constrained computing resources and capabilities. Thus, enabling public audit ability for cloud data storage security is of critical importance so that users can resort to an external audit party to check the integrity of outsourced data when needed. To securely
introduce an effective third party auditor (TPA), the following two fundamental requirements have to be met: 1) TPA should be able to efficiently audit the cloud data storage without demanding the local copy of data, and introduce no additional online burden to the cloud user; 2) The third party auditing process should bring in no new vulnerabilities towards user data privacy. In this paper, we utilize and uniquely combine the public key based homomorphic authenticator with random masking to achieve the privacy-preserving public cloud data auditing system, which meets all above requirements. To support efficient handling of multiple auditing tasks, we further explore the technique of bilinear aggregate signature to extend our main result into a multi-user setting, where TPA can perform multiple auditing tasks simultaneously. Extensive security and performance analysis shows the proposed schemes are provably secure and highly efficient.

3. PROPOSED SYSTEM
A. OWNER REGISTRATION:
An owner has to upload its files in a cloud server, he/she should register first. Then only he/she can be able to do it. For that he needs to fill the details in the registration form. These details are maintained in a database.

B. OWNER LOGIN:
Any of the above mentioned person have to login, they should login by giving their email id and password.

C. USER REGISTRATION:
If a user wants to access the data which is stored in a cloud, he/she should register their details first. These details are maintained in a Database.

D. USER LOGIN:
If the user is an authorized user, he/she can download the file by using file id which has been stored by data owner when it was uploading.

E. THIRD PARTY AUDITOR REGISTRATION:
If a third party auditor TPA (maintainer of clouds) wants to do some cloud offer, they should register first. Here we are doing like, this system allows only three cloud service providers.

F. THIRD PARTY AUDITOR LOGIN:
After third party auditor gets logged in, He/ She can see how many data owners have uploaded their files into the cloud. Here we are providing three tpa for maintaining three different clouds.

G. DATA SHARING:
We only consider how to audit the integrity of shared data in the cloud with static groups. It means the group is pre-defined before shared data is created in the cloud and the membership of users in the group is not changed during data sharing. The original user is responsible for deciding who is able to share her data before outsourcing data to the cloud. Another interesting problem is how to audit the integrity of shared data in the cloud with dynamic groups — a new user can be added into the group and an existing group member can be revoked during data sharing — while still preserving identity privacy.

4. CONCLUSION
In this paper, we propose Oruta, a privacy-preserving public auditing mechanism for shared data in the cloud. We utilize ring signatures to construct homomorphic authenticators, so that a public verifier is able to audit shared data integrity without retrieving the entire data, yet it cannot distinguish who is the signer on each block. To improve the efficiency of verifying multiple auditing tasks, we further extend our mechanism to support batch auditing. There are two interesting problems we will continue to study for our future work. One of them is traceability, which means the ability for the group manager (i.e., the original user) to reveal the identity of the signer based on verification metadata in some special situations. Since Oruta is based on ring signatures, where the identity of the signer is unconditionally protected [21], the current design of ours does not support traceability. To the best of our knowledge, designing an efficient public auditing mechanism with the capabilities of preserving identity privacy and supporting traceability is still open. Another problem for our future work is how to prove data freshness (prove the cloud possesses the latest
version of shared data) while still preserving identity privacy.

5. REFERENCES

