Prevention of Vehicle Emission rate and accident detection in cities using RFID Technology

1Ramagiri Mounika; 2G. Purna Chandra Rao & 3M. Shyam sundar
2. Associate Prof, SVS Institute of Technology, Warangal, Hasanparthy, Bheemaram, Hanamkonda, Telangana 506015.
3. Associate Prof, SVS Institute of Technology, Warangal, Hasanparthy, Bheemaram, Hanamkonda, Telangana 506015.

ABSTRACT
In the present day scenario, traffic rules are frequently violated by the drivers and over speeding occur due to improper driving behavior. So, a driver assistance system is required to prevent over speeding, violation of road rules and also to display alert messages. The proposed system has an alerting, recording and reporting system for over speed violation management and it also includes accident detection and reporting to the police station system. It will use GPS module to get the speed, time and location information. The main advantage of this system is that there is no need for individual modules for these two detections. Only one module is used for both over speed violation detection, accident detection and reporting. So the cost of the whole system will be reduced.

1. INTRODUCTION
As the rate of accidents is increased in our day-today life, speed of vehicles should be controlled as much as possible. During 2011, a whole of 4, 97,686 road accidents were reported in India, which is a result of lack of speed control and violating the road rules [5]. To Ensure decline in accidents and to improve road safety, speed control techniques such as speed control in school and college zones by using RF transceiver, Automatic braking systems, Camera based detection, RFID technology, Zigbee based detection are implemented. The existing techniques are still not able to reduce the number of accidents effectively and they are expensive also. Their range is also very small, so, we have to place repeated receivers on the road at very short intervals, which increases the system cost. Hence, there is a need to implement Intelligent Speed Adaptation (ISA) in which violation management provides efficient monitoring, registering and reporting system of vehicle speed if exceeds the limit. Moreover, if the accident occurs, this system sends the information to the police station, so that, they can inform to hospital/ambulance or any registered number.

2. Literature Review
After doing literature review in the area of accident detection and prevention of traffic rules’ violation, we came to know that there are various techniques available for detection of speed violation and accident, like RF transceiver, GPS module, Automatic braking systems, Camera based detection, RFID technology, Zigbee based detection. We have explained following techniques in brief:
A. Use of GPS module in accident detection system
B. Use of RF transceiver in wireless vehicular accident detection
C. RFID technology based detection
D. Over speed violation detection through Zigbee

A. Use of GPS module in accident detection system
The use of GPS and GSM interfacing with microcontroller shortens the alarm time to a large extent and locate the site of accident accurately. When a vehicle meets with an accident immediately vibration sensor will detect the signal or if a car rolls over, and Micro electro mechanical system (MEMS) sensor will detects the signal and sends it to controller. Microcontroller sends the alert message through the GSM MODEM: including the location to police control room or a rescue team [1]. By means of satellite navigation system, first aid rescuers can accurately locate the place with maximum error controlled by 10meters, so that they can save the injured people as soon as possible.

B. Use of RF transceiver in wireless vehicular accident detection
RF transceiver is also used to send the accident information. The RF transmitter module interfaced with the microcontroller will transmit the accident information to the nearby Emergency Service Provider. This information is received by the RF receiver module at the service provider's control room in the locality. The service provider can use this information to arrange for ambulance and also inform police and hospital [3]. The limitation of this method is that the installment of repeated receivers on the road at a very short interval because the RF transceiver module used has a range up to 100 meters under ideal conditions.

C. RFID technology based detection
In RFID based embedded system for prevention of road accidents; the system uses N number of RFID tags to transmit general area information and RFID reader in vehicle. Whenever vehicle meets with an accident, the system reads the area information from RFID tag splaced on the road and transfers this information to the specific numbers stored in database using GSM module [4]. The limitation of this method is that the installment of N number of RFID tags on the road to transmit general area information.

D. Over speed violation detection through Zigbee
Over Speed Violation detection can be implemented using Zigbee module, in which Zigbee transmitter is used to send the speed limit of the particular lane entered by the vehicle. The receiver unit placed in the vehicle receives the messages and sends to the microcontroller. When speed of the vehicle exceeds the limit, the microcontroller records the violated speed and time. A GSM module sends message to the nearest traffic personnel immediately after a violation occurs [5]. The limitation of this method is that we have to place N number of Zigbee transmitter modules in city to get the speed limit of the particular lane entered by the vehicle because Zigbee module has a very small range.

3. Problem Definition
After long research in this area, we came to know that the existing techniques are still not able to reduce the number of accidents effectively and they are expensive also. Moreover, the traditional system is having two or more modules for speed violation and accident detection. Whereas as proposed system facilitates Speed Violation and Accident Detection using a single module so that the cost of the whole system will be
reduced. The system has GPS module which continuously checks the location and speed of the vehicle. When speed of the vehicle nears the speed limit it displays the warning and if exceeds the limit, the microcontroller records the violated speed and time. Then GSM module sends message to the nearest traffic personnel. Moreover, if the accident occurs, this systems ends the message to the respective numbers stored in the microcontroller.

Hardware Design

ARM7

The ARM7 family includes the ARM7TDMI, ARM7TDMI-S, ARM720T, and ARM7EJ-S processors. The ARM7TDMI core is the industry’s most widely used 32-bit embedded RISC microprocessor solution. Optimized for cost and power-sensitive applications, the ARM7TDMI solution provides the low power consumption, small size, and high performance needed in portable, embedded applications.

The ARM7EJ-S processor is a synthesizable core that provides all the benefits of the ARM7TDMI low power consumption, small size, and the thumb instruction set while also incorporating ARM’s latest DSP extensions and enabling acceleration of java-based applications. Compatible with the ARM9™, ARM9E™, and ARM10™ families, and Strong-Arm® architecture software written for the ARM7TDMI processor is 100% binary-compatible with other members of the ARM7 family and forwards-compatible with the ARM9, ARM9E, and ARM10 families, as well as products in Intel’s Strong ARM and x scale architectures. This gives designers a choice of software-compatible processors with strong price-performance points. Support for the ARM architecture today includes:

- Operating systems such as Windows CE, Linux, palm and SYMBIAN OS.
- More than 40 real-time operating systems, including qnx, Wind River’s vxworks and mentor graphics’ vrtx.
- Co simulation tools from leading eda vendors
- A variety of software development tools.

GPS Module

The Global Positioning System (GPS) is a satellite based navigation system that sends and receives radio signals. A GPS receiver acquires these signals and provides the user with information. Using GPS technology, one can determine location, velocity and time, 24 hours a day, in any weather conditions anywhere in the world for free [7]. There is a set of 24 satellites that are continuously orbiting the earth. These satellites are equipped with atomic clocks and send out radio signals as to the
exact time and their location. These radio signals from the satellites are picked up by the GPS receiver. Once the GPS receiver locks on to four or more of these satellites, it can triangulate its location from the known positions of the satellites [7]. It is a high performance, low power satellite based model. It is a cost effective and portable system which accurately detects the location. A software standard for commercial GPS receivers is NMEA 0183. This is a serial protocol using ASCII sentences to convey information from the GPS receiver. According to NMEA-0183 protocol standard specifications, GPS receiver transmits the position and speed information to the PC and PDA etc. via the serial port. It is the most widely GPS receiver used protocol currently. The receiver sends multiple types of statements, only a few of letters in certain statements is valid, so it needs to parse the received data, separating out the required information.

GSM Module
GSM (Global System for Mobile communications) is an open, digital cellular technology used for transmitting mobile voice and data services. It is a digital mobile telephone system that is widely used in Europe and other parts of the world. GSM uses a variation of Time Division Multiple Access (TDMA) and is the most widely used of the three digital wireless telephone technologies (TDMA, GSM, and CDMA. It operates at either the 900 MHz or 1,800 MHz frequency band. It supports voice calls and data transfer speeds of up to 9.6 kbps, together with the transmission of SMS (Short Message Service) [9]. The message sending module is SIM900, it is a complete Quad-band GSM/GPRS module designed by SIMCom. SIM900 delivers GSM/GPRS 850/900/1800/1900MHz performance for voice, SMS, Data and Fax in a small form factor and with low power consumption. SIM900 is designed as a DCE (Data Communication Equipment). It provides a full modem serial port, which is used for data transmission and for sending AT commands. The SIM900 is integrated with the TCP/IP protocol; extended TCP/IP AT commands are developed for customers to use the TCP/IP protocol easily, which is very useful for those data transfer applications. Both GPS and GSM are interfaced to the control unit using serial communication protocol [9].

6. Software Structure
In order for the hardware to function, the firmware code for the system has to be written. Theoretically, software that resides in the non-volatile memory and handles the operation as well as function of a system is known as firmware. The firmware holds the information that the Microcontroller needs to operate or run. Thus, it needs to be free of bugs and errors for a successful application or product. There are various types of software that could be used to program ARM controller. Program can be written in a variety of languages such as C, Basic, Pascal or even Assembler. Proposed system is programmed using the Embedded C and debugged with keil-4 tool. The flow chart for speed violation detection The speed limit of a particular lane entered by the vehicle is acquired as an input variable. Current speed of the vehicle is compared with the speed limit and appropriate action is taken based on the result of conditional execution, and the GSM modem sends SMS to traffic police.

Conclusion
There are many techniques available for speed violation and accident detection but they are
still not able to reduce the number of accidents. We have to also place repeated receivers on the road at very short intervals. So it increases the system cost. Hence the proposed system uses the GPS module to get speed, time and location information which will be useful for traffic personnel to regulate the speed control and accident detection. Insurance schemes can be implemented based on the driving behavior. Comparing earlier implementations, this is a low cost method which is practically feasible because it uses only one module for speed violation detection as well as accident detection.

References


