Topological Issues Related to Single-Phase Power Factor Correction

Gavish Gothria¹, Abhishek Gupta¹, Anuj Singh¹
Dronacharya College Of Engineering, Gurgaon, India

Abstract-

The equipment connected to an electricity distribution network usually needs some kind of power conditioning, typically rectification, which produces a nonsinusoidal line current due to the nonlinear input characteristic. With the steadily increasing use of such equipment, line current harmonics have become a significant problem. Their adverse effects on the power system are well recognized. They include increased magnitudes of neutral currents in three-phase systems, overheating in transformers and induction motors. Several international standards now exist, which limit the harmonic content due to line currents of equipment connected to Electricity distribution networks. As a result, there is the need for a reduction in line current harmonics, or Power Factor Correction - PFC.

1. INTRODUCTION

1.1 Nonlinear loads and their effect on the electricity distribution network

The most significant examples of nonlinear loads are reviewed next. Single-phase diode rectifiers are needed in relatively low power equipment that need some kind of power conditioning, such as electronic equipment (e.g. TVs, office equipment, battery chargers, electronic ballasts) and household appliances. For higher power, three phase diode rectifiers are used, e.g. in variable-speed drives and industrial equipment. In both single- and three-phase rectifiers, a large filtering capacitor is connected across the rectifier output to obtain DC output voltage with low ripple. As a consequence, the line current is nonsinusoidal. As an example, a single-phase diode rectifier is presented in Fig. 1.1, together with its line current and voltage waveforms. The odd harmonics of the line current, normalized to the fundamental, are shown in the same figure. The normalized amplitudes of the 3rd, 5th, 7th and 9th harmonics are significant.

While the effect of a single low power nonlinear load on the network can be considered negligible, the cumulative effect of several nonlinear loads is important. These effects include:

- Losses and overheating in transformers, shunt capacitors, power cables leading to premature aging and failure.
- Reduced power factor, hence less active power available from a wall outlet having a certain apparent power rating.
- Distortion of the line voltage via the line impedance, as shown in Fig. 1.1, where the typical worst-case values, $R_{line}=0.4\Omega$ and $L_{line}=80\mu H$, have been considered. The effect is stronger in weaker grids.
Topological Issues Related to Single-Phase Power Factor Correction

Gavish Gothria, Abhishek Gupta, Anuj Singh
III. METHODS FOR IMPROVING EFFICIENCY

The PFC stage performs an additional power processing operation, and therefore it has a negative impact on the overall efficiency of the power supply. In this dissertation, we aim at improving its efficiency by reducing the switch conduction losses in the combined diode bridge and PFC stage, as well as on circuit techniques for reducing the switching losses.

IV. REDUCTION OF CONDUCTION LOSSES

Conduction losses are caused by the current flowing through a non-ideal switching device in the on state, which determines a certain voltage drop on the device. A static model of the switching device is useful for estimating the conduction losses. Static models are presented in Fig. 4.1, for on-state diode and MOSFET, devices that are considered in publication for comparing the conduction losses of the analyzed topologies.

\[
\begin{align*}
P_{D,\text{cond}} &= V_D I_{D,\text{av}} + r_D I_{D,\text{rms}}^2, \quad (4.1) \\
P_{S,\text{cond}} &= r_{DS} I_{S,\text{rms}}^2, \quad (4.2)
\end{align*}
\]

where \(I_D\), av and \(I_D\), rms are the average and RMS diode currents, respectively. Similarly, the conduction losses of switch S (MOSFET) are expressed as:

Table 1.2 Limits for Class C equipment in standard IEC 1000-3-2.

<table>
<thead>
<tr>
<th>Harmonic order</th>
<th>Maximum permissible harmonic current expressed as a percentage of the input current at the fundamental frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(%)</td>
</tr>
<tr>
<td>2</td>
<td>2, 30 (PF^+)</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>(11 \leq n \leq 39) (odd harmonics only)</td>
<td>(%)</td>
</tr>
</tbody>
</table>

\(PF^+\) is the circuit power factor

Table 1.3 Limits for Class D equipment in standard IEC 1000-3-2.

<table>
<thead>
<tr>
<th>Harmonic order</th>
<th>Maximum permissible harmonic current per watt</th>
<th>Maximum permissible harmonic current</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(\mu A/W)</td>
<td>(A)</td>
</tr>
<tr>
<td>3</td>
<td>3.4</td>
<td>2.30</td>
</tr>
<tr>
<td>5</td>
<td>1.9</td>
<td>1.14</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>0.77</td>
</tr>
<tr>
<td>9</td>
<td>0.5</td>
<td>0.40</td>
</tr>
<tr>
<td>11</td>
<td>0.35</td>
<td>0.33</td>
</tr>
<tr>
<td>(13 \leq n \leq 39)</td>
<td>(\mu A/W)</td>
<td>As in Class A</td>
</tr>
</tbody>
</table>

As shown in Fig. 4.1, the static characteristic of the on-state diode can be modeled as a voltage source \(V_D\) in series with a resistor \(r_D\). On the other hand, the appropriate static model for the on-state MOSFET is just a resistor \(r_{DS}\). With these models, it is straightforward to calculate the conduction losses of diode D.

Fig. 4.1 Static models for an on-state switching device: a) Diode; b) MOSFET
of the switches. Considering also (4.1) and (4.2), we can conclude that one way to diminish the total conduction losses is to reduce the number of switches that are in the power path and/or to reduce the average/RMS currents flowing through the switches, assuming that the \(r_{DS} \) of MOSFETs and the \(V_D \) and \(r_D \) of diodes remain unchanged. As a result, switches with higher voltage rating and therefore with higher losses need to be used.

V. REDUCTION OF SWITCHING LOSSES

The commutation process of real switching devices takes a certain time, during which the instantaneous power dissipated in the device can be very large. Therefore, switching losses are a major reason for decreased efficiency in converters. To discuss the reasons for them, let us consider once more the first-order switching cell and the Buck converter, which are shown again in Fig. 4.2.

![Hard-switching cell](image)

a)

![Buck converter](image)

b)

Fig. 4.2 a) Hard-switching cell; b) Buck converter.

The switching cell is labeled ‘hard-switching cell’, because there is no mechanism in place to decrease the switching losses. The inductor current \(I \) is assumed to be constant, fact which gives specific characteristics to the switching mechanism. In addition, the switching mechanism depends on certain aspects on the types of switching devices that are used.

VI. CONCLUSION

We first analyzed the requirements for the EMI filter of a PFC stage based on a Boost converter operating in DICM. As expected, the differential-mode conducted EMI is larger in DICM when compared to CICM, when constant switching-frequency is used and for the same power level, which supports our motivation to investigate higher-order topologies. It was also shown that for both the constant and the variable switching-frequency cases, the input impedance of the converter is practically purely resistive and no instabilities can arise from the interaction with the EMI filter.

Finally, we concentrated on reducing the switching losses by using ZVS and we proposed a novel ZVT Buck converter. We then applied the proposed technique to a 500W forward converter, for which simulations show an efficiency improvement approximately from 2% at light load to 5.5% at full load. Even if the technique is presented for DC/DC applications, its versatility allows the application to converters used for PFC applications as well.

Topological Issues Related to Single-Phase Power Factor Correction *Gavish Gothria, Abhishek Gupta, Anuj Singh*
REFERENCE

